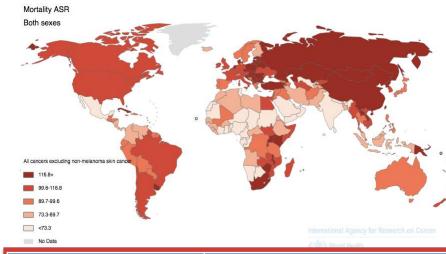

WHO Perspective on Cancer Screening


Understanding the Impact & Potential Harms

André Ilbawi, MD Medical Officer, Cancer Control World Health Organization ilbawia@who.int

Why Cancer Matters

Country	Financial catastrophe
India	32%
Haiti	>66%
VietNam	78%
China	21-75%
South Korea	40%
US	12%

Outline

- Understanding the policy objective
 - Disease criteria for effective screening
 - Organized screening programmes

Potential harms of screening

Public health decision-making

Outline

- Understanding the policy objective
 - Disease criteria for effective screening
 - Organized screening programmes

Potential harms of screening

Public health decision-making

Programme Objective

- Public health goals
 - Public health surveillance
 - Prevent disease when possible
 - Detect disease as early as possible
 - → Maximize lives saved and reduce burden of disease for population

CONSTITUTION OF THE WORLD HEALTH ORGANIZATION¹

THE STATES Parties to this Constitution declare, in conformity with the Charter of the United Nations, that the following principles are basic to the happiness, harmonious relations and security of all peoples:

Health is a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity.

The enjoyment of the highest attainable standard of health is one of the fundamental rights of every human being without distinction of race, religion, political belief, economic or social condition.

The health of all peoples is fundamental to the attainment of peace and security and is dependent upon the fullest co-operation of individuals and States.

Comprehensive Cancer Control

Prevention

Early detection

Treatment

Palliative care

Early detection:

Aims to identify cancer in early stages or precancerous lesions;

Two strategies: screening & early diagnosis

Comprehensive Cancer Control

Prevention

Early detection

Treatment

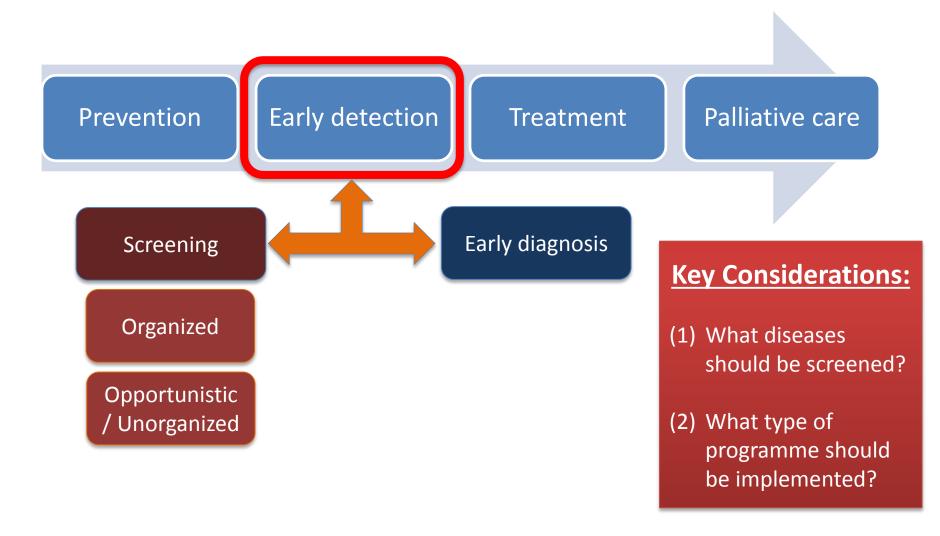
Palliative care

Goal = early identification

- Reduce mortality / improve survival
- → Less morbid treatment
- → Reduced costs of care

9 in 10 survive 5 or more years

Less than 1 in 10 survive 5 or more years



Early Detection of Cancer

Screening vs. Early Diagnosis

• Screening:

- Presumptive identification of unrecognized disease in general population
- More than a test

Key considerations:

- (1)What diseases should be screened?
- (1)What type of programme should be implemented?

Awareness of symptoms

Screenable Disease: Wilson and Jungner criteria

34

"The central idea of early disease detection and treatment is essentially simple. However, the path to its successful achievement ... is far from simple though sometimes it may appear deceptively easy."

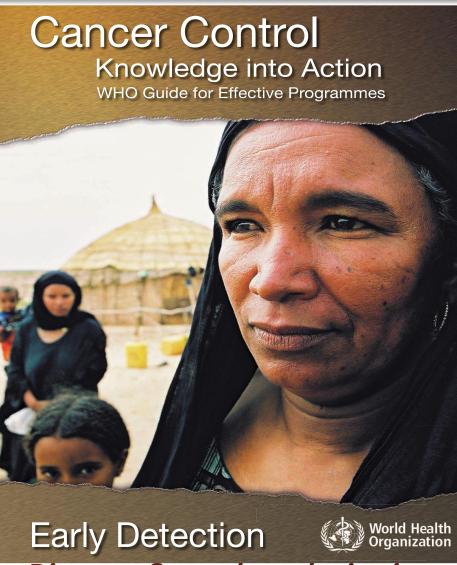
Wilson JMG, Junger G (Principles and Practice of Screening for Disease. WHO, 1968)

Cancers to be Considered

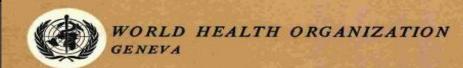
Cervical Breast Colorectal **Key considerations:** (1) What diseases should be screened? (1)What type of programme should be implemented? Kidnev

What can be screened?

←→ What should be screened?



Screenable Disease: Implementation



PUBLIC HEALTH PAPERS

34

PRINCIPLES AND PRACTICE
OF SCREENING FOR
DISEASE

J. M. G. WILSON & G. JUNGNER

Disease- & test-based criteria

Factor 2: Effective Screening Programmes

WHO screening targets:

1. Organized (vs opportunistic):

- a. Greatest impact
- b. Fewest harms
- c. Equitable
- 2. >70% participation

Criteria for Organized Screening

National program to make service available

Coordination, centralized at national/regional level

Protocol for screening frequency, target population

Mechanism of inviting target population systematically

Functioning health information system including registries

Monitoring & Evaluation program

Outline

- Understanding the policy objective
 - Disease criteria for effective screening
 - Organized screening programmes

Potential harms of screening

Public health decision-making

Outline

Understanding the policy objective

Disease criteria for effective scres

Organized screening programm

Potential harms of screening

 Public health decision-making epidemiology

1. Overdiagnosis

2. False (+) result

3. Ineffectual service

Screening Process

Target population

Population screened

Call mechanism

Breast Cancer Screening

Population sensitized to screening test

High quality, accurate, accessible screening test Confirmatory pathologic diagnosis & staging

Referral for definitive treatment

Treatment accessible, high quality

Sample population: 1 million

55,000 women screened with mammography each year

5,000 with abnormal screening test

350 with confirmed cancer found on screening

4,720 require follow-up & found to have no abnormality

450 women will require treatment

340 women will survive without screening

20 women avoid death from breast ca due to screening

30 women will not receive any major benefit (due to overdiagnosis)

Breast ca screening costs in HIC: ~\$10mil per 1mil population

Breast treatment costs in HIC: ~ \$15mil per 1mil population

Lung Cancer Screening

Population sensitized to screening test

High quality, accurate, accessible screening test

Confirmatory pathologic diagnosis & staging

Referral for definitive treatment

Treatment accessible, high quality

Sample population: 1 million

53,000 women screened with LDCT each year

13,000 with abnormal screening test

500 with confirmed cancer found on screening

12,500 require follow-up & found to have no abnormality

350 require treatment

50 will survive without screening 250 will die regardless

50 avoid death from lung ca due to screening

50 will not receive any major benefit (due to overdiagnosis)

Lung ca screening costs in HIC: ?

Cost-effectiveness: \$2,000 - \$250,000 per QALY

Harm #1: Overdiagnosis = finding extra cancers

Finding "extra" tumors –
 that would never cause problem

- <u>Key message</u>: negative consequences of overdiagnosis:
 - 1. Results unnecessary treatment, complications of treatment
 - 2. Inflates benefits of screening

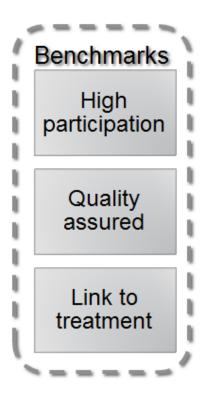
Melanoma 7.89 23.57 199 2.07 2.74 32

Harm #2: False Positive Findings

- Consequences
 - Individual

Key message:

- 1) False + & overdiagnosis: cause significant personal & system costs (~\$USD 4 billion/yr in US)
 - 2) Low quality screening tests result in greater harm
 - Can be 10-50% of programme costs
 - In US, expenditure for false (+) ~ USD\$1-2 bil/yr



Organized cancer screening

Situation	Women Abn Situation screened re		False positives	Women benefitting from screening	Program costs
Optimal conditions (Efficacy)	40,000	3,000	2,920	20	\$ 300,000

Low participation	20,000	1,500	1,460	10	\$ 150,000

Situation	Women screened	Abnormal screening results	False positives	Women benefitting from screening	Program costs
Optimal conditions (Efficacy)	40,000	3,000	2,920	20	\$ 300,000

Low quality 40,000

5,000

4,930

8

\$ 500,000

Situation Women screened		Abnormal screening results	False positives	Women benefitting from screening	Program costs
Optimal conditions (Efficacy)	40,000	3,000	2,920	20	\$ 300,000

Poor link to diagnosis and treatment

40,000

3,000

2,920

10

\$ 300,000

Harm #3: Ineffectual Services, where are we now?

Cancer	Participation	Opportunistic	Co- payment	Inequities
Breast	35-80% (Canton-specific)	Yes		Yes (SES, region, education)
Colorectal	22%	Yes	10% after deductible	Yes (SES)
Cervical	70-80%	Yes		Yes (SES, region)
Prostate	~70\$ (from 50% in 1992)	Yes		Yes (SES, region, education)

Key message: Consider public health priorities, budgetary impact, health system capacity when proposing screening programme.
 High participation and quality are critical.

Putting it all together

Efficacy vs. Effectiveness

Situation	Women screened	Abnormal screening results	False positives	Women benefitting from screening	Program costs
Optimal conditions (Efficacy)	40,000	3,000	2,920	20	\$ 300,000

Outline

- Understanding the policy objective
 - Disease criteria for effective screening
 - Organized screening programmes

Potential harms of screening

Public health decision-making

Public Health Decision-Making

- Cancer screening
 - Must ensure favorable benefit-harm ratio
 - Decision-making options
 - 1. Regulatory framework
 - 2. Public funding for programme
 - Considerations
 - Limited data for evidence-based policies
 - Context-specific with acceptable risks for population
 - Mechanism for M&E critical

Emotional Epidemiology

Interpreting the Results

Screening is balance of benefits & harms

 Estimations of benefits vs harms, vary

→Impact value of screening

 Modeling impact challenging **Benefits**

Harms

Treatment complications

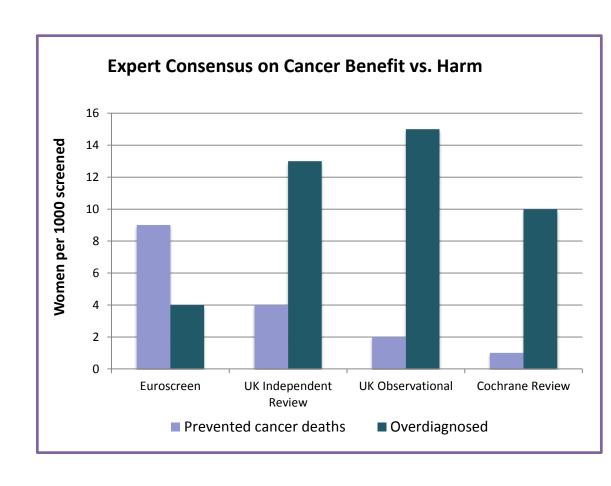
Overdiagnosis

False negatives

False positives

Identifying cancer early

Reducing cancer deaths



Modeling the Impact

- Variables to consider:
 - Appropriate target population (age of exposure, dose, gender)
 - Test quality
 - Test frequency
 - Effectiveness of treatment
 - → Consider study methodology & biases

Lung Cancer Evidence

Outcome

Notes

Results end of 2018

model

Evaluating risk prediction

Setting

UK

50-75yo

Study

Intervention)

Intervention)

(Lung Cancer Screening

UKLS

NLST (National Lung Screening Trial)	USA 55-74yo >30pk-yr hx	20% relative mortality	Younger age
NELSON	Belgium/Netherlands 1, 2, 2.5yr interval	TBD Higher interval rate w/ 2.5yrs vs 1,2yr	Comparison w/ no screening 84% male
DANTE	Italy (n=2472) 60-74yo Annual	No impact ? Small sample size	Male only
DLSCT (Danish Randomized Lung Cancer CT screening trial)	Denmark 50-60	No impact ? Greater mass size ? Sample size	Lower risk population
MILD (Multicentric Italian Lung Detection)	Italy	No impact ? Low quality Inadequate randomized	Lower risk population
LUSI (Lung Cancer Screening	Germany 50-69yo	TBD	Recall rates decline with each interval

TBD

Case for/against Breast cancer screening

Case for

- BCa specific mortality

Case against

- Personal, financial cost of false +
- Financial impact of overdiagnosis
- Discomfort
- Radiation (in high-risk subgroups)

Case for/against Lung cancer screening

Case For

- **↓** Lung ca-specific mortality
- • overall mortality
- ? **✓** morbidity for diagnosed?
- ? Impact on tobacco use ?

Case Against

- Focus should remain on prevention (>1000x more cost-effective)
- High rates of false +, incidental findings
 - Patient distress
 - − ↑ cost
- fincidental findings
- Radiation exposure
- Overdiagnosis (13-27%)
- ? Impact on tobacco use ?

Modeling the Impact: Breast Cancer

Scenario #1

(Euroscreen)

50,000 screened

Incidence 100/100,000

Study sensitivity high

High quality treatment

Benefits

40 breast cancer deaths avoided

Less morbid treatment

Per 1,000,000 population

Harms

10 Potential overdiagnosis

2,000 false (+)

Modeling the Impact: Breast Cancer

Scenario #2 (Cochrane)

50,000 screened

Incidence 100/100,000

Study sensitivity high

High quality treatment

Benefits

6 breast cancer deaths avoided

Harms

100 Potential overdiagnosis

5,000 false (+)

Per 1,000,000 population

Modeling the Impact: Lung Cancer

Scenario #1 (High risk)

25,000 screened

Incidence 50/100,000

Specificity high (low FP, 5mm mass)

Benefits

20 lung cancer deaths avoided

Reduced overdiagnosis

Harms

Missed cancer in population

Higher programmatic costs

Modeling the Impact: Lung Cancer

Scenario #2

(Expanded criteria)

50,000 screened

Benefits

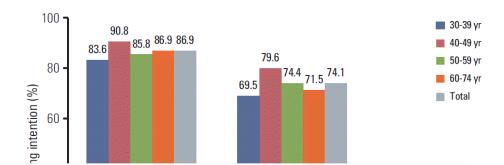
40 lung cancer deaths

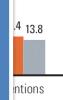
Harms

20,000 false +

<u>Incidence</u>

Key message: selecting the appropriate target population (high risk, high incidence) and facilitating favourable conditions → increases the effectiveness of screening programme




Providing Integrated People-Centred Care

- Informed decisionmaking
 - Expert guidance
 - Bias toward intervention, benefits

Change in behavior after counseling for thyroid cancer screening

Key message: screening requires balance of all medical ethics principles: autonomy, beneficence, non-maleficence, justice

Summary

- Just because it can be screened, doesn't mean it should
 - Strict criteria when deciding whether to screen
 - Routine M&E required to ensure programme effectiveness
- Screening can cause real harm to individuals and to health system
 - Communicate balance of benefit/harm to all stakeholders
 - Engagement in public sphere critical

THANK YOU

André M. Ilbawi ilbawia@who.int

Next Steps for Lung Cancer Screening

- Additional data pending:
 - 2+ trials pending
 - Cost data / health system impact TBD

- Improving outcomes
 - Screen positive criteria / reduce false +
 - Quality of radiology review
 - Use of biomarkers
 - Review target population

