Inhalt

Meldungen Infektionskrankheiten ... 4
Sentinella-Statistik ... 6
Wochenbericht zu den grippeähnlichen Erkrankungen 9
SPSU – Jahresbericht 2018 ... 12
Rezeptsperrung ... 26
Meldungen Infektionskrankheiten
Stand am Ende der 45. Woche (12.11.2019)\(^a\)

* Ausgeschlossen sind materno-fötale Röteln.
* Bei schwangeren Frauen und Neugeborenen
* Primäre, sekundäre bzw. frühlatente Syphilis.
* Eingeschlossen sind Fälle von Haut- und Rachendiphtherie, aktuell gibt es ausschliesslich Fälle von Hautdiphtherie.

<table>
<thead>
<tr>
<th>Infekionskrankheiten:</th>
<th>Stand am Ende der 45. Woche (12.11.2019)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratorische Übertragung</td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenzae: invasive Erkrankung</td>
<td>1 4 4 9 12 11 127 134 120 108 119 98</td>
</tr>
<tr>
<td>Influenzavirus-Infektion, saisonale Typen und Subtypen(^c)</td>
<td>9 11 14 20 21 38 13696 14686 9481 13348 13638 7768</td>
</tr>
<tr>
<td>Legionelllose</td>
<td>15 12 12 53 53 40 578 560 488 520 509 439</td>
</tr>
<tr>
<td>Masern</td>
<td>2 3 4 214 48 118 212 46 102</td>
</tr>
<tr>
<td>Meningokokken: invasive Erkrankung</td>
<td>2 2 1 43 58 55 34 54 51</td>
</tr>
<tr>
<td>Pneumokokken: invasive Erkrankung</td>
<td>16 9 11 57 42 67 897 957 977 746 815 803</td>
</tr>
<tr>
<td>Röteln(^d)</td>
<td>1 2 1 2 1</td>
</tr>
<tr>
<td>Röteln, materno-fötal(^e)</td>
<td></td>
</tr>
<tr>
<td>Faeco-orale Übertragung</td>
<td></td>
</tr>
<tr>
<td>Campylobacteriosis</td>
<td>138 135 146 596 609 610 7381 7488 7375 6476 6768 6501</td>
</tr>
<tr>
<td>Enterohämorrhagische E.-coli-Infektion</td>
<td>22 12 16 113 73 60 1131 789 690 1015 725 636</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>5 10 9 13 27 42 418 515 565 368 463 482</td>
</tr>
<tr>
<td>Hepatitis E</td>
<td>1 1 6 5 113 55 1 1</td>
</tr>
<tr>
<td>Listeriose</td>
<td>1 1 1 3 3 4 36 52 44 31 49 41</td>
</tr>
<tr>
<td>Salmonellose, S. typhi/paratyphi</td>
<td>40 18 26 173 131 151 1530 1475 1859 1375 1323 1680</td>
</tr>
<tr>
<td>Shigellose</td>
<td>7 4 4 35 30 18 223 231 142 187 213 123</td>
</tr>
</tbody>
</table>

\(^a\) Woche 45 letzte 4 Wochen letzte 52 Wochen seit Jahresbeginn

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemophilus influenzae: invasive Erkrankung</td>
<td>1 4 4</td>
<td>9 12 11</td>
<td>127 134 120</td>
<td>108 119 98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenzavirus-Infektion, saisonale Typen und Subtypen</td>
<td>9 11 14</td>
<td>20 21 38</td>
<td>13696 14686 9481</td>
<td>13348 13638 7768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legionelllose</td>
<td>15 12 12</td>
<td>53 53 40</td>
<td>578 560 488</td>
<td>520 509 439</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masern</td>
<td>2 3 4</td>
<td>214 48 118</td>
<td>212 46 102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meningokokken: invasive Erkrankung</td>
<td>2 2 1</td>
<td>43 58 55</td>
<td>34 54 51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumokokken: invasive Erkrankung</td>
<td>16 9 11</td>
<td>57 42 67</td>
<td>897 957 977</td>
<td>746 815 803</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Röteln</td>
<td>1 2 1</td>
<td>2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Röteln, materno-fötal</td>
<td>0.01 0.02 0.01</td>
<td>0.01 0.03 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberkulose</td>
<td>3.00 6.10 5.50</td>
<td>2.00 4.10 6.40</td>
<td>4.80 6.80 8.60</td>
<td>5.00 6.20 6.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campylobacteriosis</td>
<td>138 135 146</td>
<td>596 609 610</td>
<td>7381 7488 7375</td>
<td>6476 6768 6501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterohämorrhagische E.-coli-Infektion</td>
<td>22 12 16</td>
<td>113 73 60</td>
<td>1131 789 690</td>
<td>1015 725 636</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>5 10 9</td>
<td>13 27 42</td>
<td>418 515 565</td>
<td>368 463 482</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis E</td>
<td>1 1</td>
<td>6 5</td>
<td>113 55</td>
<td>95 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listeriose</td>
<td>1 1</td>
<td>3 4</td>
<td>36 52 44</td>
<td>31 49 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonellose, S. typhi/paratyphi</td>
<td>40 18 26</td>
<td>173 131 151</td>
<td>1530 1475 1859</td>
<td>1375 1323 1680</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shigellose</td>
<td>7 4 4</td>
<td>35 30 18</td>
<td>223 231 142</td>
<td>187 213 123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Übertragbare Krankheiten

Durch Blut oder sexuell übertragen

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aids</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>74</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>65</td>
<td>68</td>
<td>75</td>
</tr>
<tr>
<td>Chlamydiose</td>
<td>255</td>
<td>249</td>
<td>242</td>
<td>969</td>
<td>850</td>
<td>884</td>
<td>11801</td>
<td>11098</td>
<td>11166</td>
<td>10320</td>
<td>9670</td>
<td>9672</td>
</tr>
<tr>
<td>Gonorrhoe</td>
<td>90</td>
<td>75</td>
<td>45</td>
<td>332</td>
<td>262</td>
<td>181</td>
<td>3757</td>
<td>2831</td>
<td>2547</td>
<td>3311</td>
<td>2691</td>
<td>2219</td>
</tr>
<tr>
<td>Hepatitis B, akut</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>22</td>
<td>41</td>
<td>33</td>
<td>19</td>
<td>31</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis C, akut</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>27</td>
<td>30</td>
<td>38</td>
<td>23</td>
<td>25</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV-Infektion</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>34</td>
<td>32</td>
<td>24</td>
<td>421</td>
<td>414</td>
<td>482</td>
<td>367</td>
<td>353</td>
<td>406</td>
</tr>
<tr>
<td>Syphilis, Frühstadien</td>
<td>7</td>
<td>14</td>
<td>23</td>
<td>45</td>
<td>592</td>
<td>515</td>
<td>515</td>
<td>515</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syphilis, total</td>
<td>10</td>
<td>18</td>
<td>28</td>
<td>29</td>
<td>62</td>
<td>84</td>
<td>818</td>
<td>916</td>
<td>989</td>
<td>701</td>
<td>803</td>
<td>857</td>
</tr>
</tbody>
</table>

Zoonosen und andere durch Vektoren übertragbare Krankheiten

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brucellose</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>4</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Chikungunya-Fieber</td>
<td>1</td>
<td>34</td>
<td>19</td>
<td>33</td>
<td>4</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Dengue-Fieber</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>213</td>
<td>163</td>
<td>158</td>
<td>188</td>
<td>146</td>
<td>138</td>
</tr>
<tr>
<td>Gelbfieber</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Hantavirus-Infektion</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Malaria</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>23</td>
<td>20</td>
<td>12</td>
<td>280</td>
<td>300</td>
<td>327</td>
<td>248</td>
<td>261</td>
<td>300</td>
</tr>
<tr>
<td>Q-Fieber</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>103</td>
<td>52</td>
<td>36</td>
<td>95</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>Trichinellose</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.60</td>
<td>0.60</td>
<td>0.40</td>
<td>0.60</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>Tularämie</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>12</td>
<td>18</td>
<td>120</td>
<td>130</td>
<td>119</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>West-Nil-Fieber</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>19</td>
<td>39</td>
<td>268</td>
<td>369</td>
<td>267</td>
<td>253</td>
<td>360</td>
<td>260</td>
</tr>
<tr>
<td>Zika-Virus Infektion</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>15</td>
<td>3</td>
<td>12</td>
<td>1.20</td>
<td>0.60</td>
<td>0.07</td>
<td>0.20</td>
<td>0.04</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Andere Meldungen

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Botulismus</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.04</td>
<td>0.03</td>
<td>2</td>
<td>0.04</td>
<td>0.03</td>
<td>2</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Creutzfeldt-Jakob-Krankheit</td>
<td>2</td>
<td>21</td>
<td>15</td>
<td>18</td>
<td>14</td>
<td>12</td>
<td>16</td>
<td>0.30</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Diphtherie</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tetanus</td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
<td>0.30</td>
<td>0.02</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.07</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Sentinella-Statistik

Provisorische Daten

Anzahl Meldungen (N) der letzten 4 Wochen bis am 8.11.2019 und Inzidenz pro 1000 Konsultationen (N/10³)
Freiwillige Erhebung bei Hausärztinnen und Hausärzten (Allgemeinpraktiker, Internisten und Pädiater)

<table>
<thead>
<tr>
<th>Woche</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>Mittel 4 Wochen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N/10³</td>
<td>N</td>
<td>N/10³</td>
<td>N</td>
</tr>
<tr>
<td>Influenzaverdacht</td>
<td>7</td>
<td>0.7</td>
<td>13</td>
<td>1.0</td>
<td>23</td>
</tr>
<tr>
<td>Mumps</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pertussis</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0.6</td>
<td>4</td>
</tr>
<tr>
<td>Zeckenstiche</td>
<td>3</td>
<td>0.3</td>
<td>4</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>Lyme-Borreliose</td>
<td>6</td>
<td>0.6</td>
<td>8</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>Herpes Zoster</td>
<td>12</td>
<td>1.1</td>
<td>11</td>
<td>0.8</td>
<td>15</td>
</tr>
<tr>
<td>Post-Zoster-Neuralgie</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
<td>0</td>
</tr>
</tbody>
</table>

Meldende Ärzte | 135 | 152 | 145 | 149 | 145.3 |
Promotionsmaterial für die Antibiotika-Rückgabeaktion vom 18. bis 30. November 2019

Bestellen Sie gratis Informationsmaterialien und helfen Sie mit, die Bevölkerung für den richtigen Umgang mit Antibiotika zu sensibilisieren.

Vielen Dank für Ihre Unterstützung!
Weil es nicht leicht ist, für andere zu sprechen: Ich sage meinen Liebsten, was ich will. Nur wenn sie meinen Willen kennen, können sie in meinem Sinn entscheiden.
Wochenbericht zu den grippeähnlichen Erkrankungen

Grippeähnliche Erkrankungen treten in unseren Breitengraden saisonal auf. Bisher konnte jeden Winter eine Grippewelle festgestellt werden. Von Jahr zu Jahr variieren aber deren Intensität, die Länge, die Art der zirkulierenden Virenstämme und die Auswirkungen auf die Bevölkerung. Um die Bevölkerung und die Ärzteschaft rechtzeitig über das Auftreten bzw. Eintreffen der Grippewelle und die Abdeckung durch die Grippeimpfstoffe informieren zu können, erstattet das BAG zwischen Oktober und April wöchentlich Bericht und gibt eine Risikobeurteilung ab.

Woche 45/2019
Der saisonale epidemiische Schwellenwert von 69 Grippeverdachtsfällen pro 100'000 Einwohner wurde nicht überschritten (Grafik 1).

Die Inzidenz war in allen Altersklassen niedrig (Tabelle 1). Die Grippe ist in den Regionen 1 und 3 sporadisch verbreitet (Grafik 2, Kasten).

In der Woche 45 wies das Nationale Referenzzentrum für Influenza (CNRI) im Rahmen der Sentinella-Überwachung in den 10 untersuchten Abstrichen zwei Influenza A Viren nach – eines vom Subtyp H1N1pdm09 und das zweite vom Subtyps H3N2.

Grafik 1
Anzahl wöchentlicher Konsultationen aufgrund grippeähnlicher Erkrankungen, hochgerechnet auf 100'000 Einwohner
Internationale Situation
In Europa wurde in den vergangenen Wochen aus allen Ländern eine niedrige Aktivität der grippeähnlichen Erkrankungen gemeldet [1]. Ebenso verzeichneten Nordamerika und Asien eine niedrige Aktivität mit steigendem Trend [2-4]. In allen Regionen wurden bisher sporadisch sowohl Influenza A als auch Influenza B Viren detektiert.

Tabelle 1:
Altersspezifische Inzidenzen für die Woche 45/2019

<table>
<thead>
<tr>
<th>Inzidenz nach Altersklasse</th>
<th>Grippebedingte Konsultationen pro 100 000 Einwohner</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4 Jahre</td>
<td>46</td>
<td>-</td>
</tr>
<tr>
<td>5–14 Jahre</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>15–29 Jahre</td>
<td>29</td>
<td>-</td>
</tr>
<tr>
<td>30–64 Jahre</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>≥65 Jahre</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Schweiz</td>
<td>18</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 2:
Zirkulierende Influenzaviren in der Schweiz
Häufigkeit der isolierten Influenzatypen und -subtypen sowie -linien

<table>
<thead>
<tr>
<th>Saison 2019/20 kumulativ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza-positive Proben</td>
</tr>
<tr>
<td>B Victoria</td>
</tr>
<tr>
<td>B Yamagata</td>
</tr>
<tr>
<td>B Linie nicht bestimmt</td>
</tr>
<tr>
<td>A(H3N2)</td>
</tr>
<tr>
<td>A(H1N1)pdm09</td>
</tr>
<tr>
<td>A nicht subtypisiert</td>
</tr>
</tbody>
</table>
ÜBERTRAGBARE KRANKHEITEN

GLOSSAR

Epid. Schwellenwert: Das Niveau der Inzidenz, ab welcher man von einer Epidemie spricht; basiert auf einem Durchschnitt der letzten zehn Saisons. Der epidemiologische Schwellenwert für die Saison 2019/20 liegt bei 69 Grippeverdachtsfällen pro 100 000 Einwohner.

Inzidenz: Anzahl Fälle pro 100 000 Einwohner; basiert auf der Anzahl Fälle pro Arzt-Patient-Kontakte.

Verbreitung: Die Verbreitung basiert auf
- dem Anteil der meldenden Sentinella-Ärztinnen und -Ärzte, die Grippeverdachtsfälle diagnostizierten und
- dem Nachweis von Influenzaviren am CNRI.

Kontakt
Bundesamt für Gesundheit
Direktionsbereich Öffentliche Gesundheit
Abteilung Übertragbare Krankheiten
Telefon 058 463 87 06
E-Mail epi@bag.admin.ch

Medienschaffende
Telefon 058 462 95 05
E-Mail media@bag.admin.ch

Referenzen

Die Sentinel-Überwachung der Grippe und der grippeähnlichen Erkrankungen in der Schweiz

Die epidemiologische Beurteilung der saisonalen Grippe beruht auf
- wöchentlichen Meldungen von Grippeverdachtsfällen von Ärztinnen und Ärzten, die dem Sentinella-Meldesystem angeschlossen sind,
- Untersuchungen von Nasenrachenabstrichen am Nationalen Referenzzentrum für Influenza (CNRI) in Genf und den Laborbestätigungen aller Influenzasubtypen, die im Rahmen der obligatorischen Meldepflicht ans BAG übermittelt werden

Die Typisierungen durch das CNRI in Zusammenarbeit mit dem Sentinella-Meldesystem erlauben die laufende Überwachung der in der Schweiz zirkulierenden Grippeviren.

Besten Dank an alle meldenden Sentinella-Ärztinnen und -Ärzte. Ihre wertvolle Mitarbeit macht die Grippeüberwachung in der Schweiz erst möglich.
SPSU–Jahresbericht 2018

1. ZUSAMMENFASSUNG

2. ALLGEMEINES ZUR SPSU
- einfach, weil es mit minimalem Aufwand betrieben wird;
- flexibel, weil es die Möglichkeit bietet, kurzfristig auftretende besondere epidemiologische Ereignisse zu untersuchen;
- umfassend, weil Fälle gemäss Falldefinition in jeder Klinik aktiv gesucht werden;
- national repräsentativ, weil alle 33 pädiatrischen Kliniken der Schweiz beteiligt sind.

Anträge für neue Studien sind an den Präsidenten des SPSU-Komitees, Prof. Dr. C. Rudin (Leitender Arzt, UKBB, Spitalstrasse 33, 4056 Basel, christoph.rudin@unibas.ch), zu richten. Ein Beschrieb des Erfassungssystems und die Richtlinien für die Aufnahme von Studien können beim SPSU-Sekretariat (Bundesamt für Gesundheit, Abteilung Übertragbare Krankheiten, 3003 Bern, Tel. 058 463 02 97 oder 058 463 87 06, Fax 058 463 87 59, daniela.beeli@bag.admin.ch) oder auf dem Internet unter www.spsu.ch bezogen werden.

3. ÜBERSICHT ÜBER DAS ERHEBUNGSSJAHR 2018
Wie in den Vorjahren haben auch 2018 alle 33 pädiatrischen Ausbildungskliniken an der SPSU-Erhebung teilgenommen. Die Meldekarten wurden wiederum zu 100 % zurückgeschickt (Tabelle 1). Im Jahr 2018 haben 31 Kliniken insgesamt 243 Erkrankungsfälle gemeldet. Davon konnten 190 (78 %) als sichere Fälle klassifiziert werden. 16 Fälle (7 %) entsprachen nicht den Falldefinitionen oder waren Doppelmeldungen, zu 36 Fällen (15 %) fehlten die Informationen für die Klassierung. Zwei pädiatrische Kliniken meldeten zu den überwachten Krankheiten keine Fälle. Die Gesamtzahlen sicherer Fälle in den abgeschlossenen und laufenden Studien sind in Tabelle 2 aufgeführt.

Teilnehmende Kliniken
Pädiatrische Klinik, Kantonsspital, Aarau; Service de Pédiatrie, Hôpital du Chablais, Aigle; Pädiatrische Klinik, Kantonsspital, Baden; Universitäts-Kinderklinik beider Basel, UKBB, Basel; Servizio di Pediatria, Ospedale San Giovanni, Bellinzona; Universitätsklinik für Kinderheilkunde, Bern; Neonatologie, Universitätsklinik für Kinderheilkunde, Bern; Kinderspital Wildersmeth, Biel; Departement für Kinder und Jugendmedizin, Kantonsspital, Chur; Service de Pédiatrie, Hôpital du Jura, Delémont; Service de Pédiatrie, Hôpital Cantonal, Fribourg; Hôpital des Enfants, HUG, Genève; Servizio di Pediatria, Ospedale «La Carità», Locarno; Service de Pédiatrie, CHUV, Lausanne; Hôpital de l’Enfance, Lausanne; Division de Neonatologie, CHUV, Lausanne; Servizio di Pediatria, Ospedale Civico, Lugano; Pädiatrische Klinik, Kantonsspital, Luzern; Service de Pédiatrie, Hôpital de la Tour, Meyrin; Service de Pédiatrie, Hôpital de Zone, Morges; Klinik für Kinder und Jugendliche, Kantonsspital, Münsterlingen; Département de Pédiatrie, Hôpital Pourtalès, Neuchâtel; Neonatologie, Klinik für Geburtshilfe und Gynäkologie, St. Gallen; Pädiatrische Klinik, Ostschweizer Frauenklinik, St. Gallen; Service de Pédiatrie, CHCVs, Sion; Service de Pédiatrie, Hôpital Riviera, Vevey; Pädiatrische Klinik, Spitalzentrum Oberwallis, Visp; Kinderklinik, Kantonsspital Winterthur; Service de Pédiatrie, eHnV, Yverdon; Pädiatrie/Neonatologie, Zollikerberg; Universitäts-Kinderklinik, Zürich; Klinik für Kinder und Jugendliche, Spital Triemli, Zürich; Neonatologie, Universitäts-Frauenklinik, Zürich.

1 SPSU-Komitee: C. Rudin, Basel (Präsident); V. Bernet, Zürich; I. Bolt, Bern; B. Laubscher, Neuchâtel und Lausanne; G. Simonetti, Bellinzona; M. Mäusezahl, Bern; D. Beeli, Bern.
Internationales

Eine Auswahl von Publikationen (in chronologischer Reihenfolge) illustriert die Aktivitäten der INoPSU:

Tabelle 1

| SPSU 2018: Übersicht über die gemeldeten Fälle und Rücklauf der Meldekarten |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| | ASL1 | TB2 | Kawasaki disease | Pertussis | CMV1 | Neonat. Listeriose | IGAS4 | Rücklauf Meldekarten % |
| Januar | 4 | 0 | 9 | 0 | 2 | 0 | 7 | 100 |
| Februar | 0 | 5 | 3 | 2 | 0 | 0 | 11 | 100 |
| März | 5 | 5 | 8 | 1 | 1 | 0 | 6 | 100 |
| April | 1 | 4 | 9 | 1 | 5 | 0 | 2 | 100 |
| Mai | 1 | 3 | 4 | 3 | 2 | 0 | 6 | 100 |
| Juni | 1 | 3 | 4 | 3 | 2 | 2 | 100 | |
| Juli | 0 | 1 | 5 | 4 | 3 | 0 | 4 | 100 |
| August | 2 | 0 | 8 | 4 | 3 | 0 | 1 | 100 |
| September | 1 | 4 | 7 | 3 | 1 | 0 | 2 | 100 |
| Oktober | 0 | 0 | 2 | 4 | 1 | 0 | 2 | 100 |
| November | 2 | 0 | 5 | 1 | 3 | 0 | 2 | 100 |
| Dezember | 1 | 10 | 11 | 4 | 1 | 4 | 0 | 48 |
| Januar 2019 | | 5 | | | | | 5 | 243 |
| Februar 2019 | | | | | | | 5 | |
| **Total** | **18** | **35** | **85** | **27** | **27** | **2** | **49** | **243** |

Sichere Fälle	18	17	64	17	24	2	48	190
Mögliche Fälle	0	0	0	0	1	0	0	1
Keine Fälle*	0	0	0	0	9	2	0	16
Fehlende Information	0	14	21	1	0	0	0	36

Anzahl teilnehmende pädiatrische Ausbildungskliniken: 33.

1 Akute schlaffe Lähmung, 2 Aktive Tuberkulose, 3 Kongenitaler Zytomegalievirus, 4 invasive Infektion Gruppe A Streptokokken, * Inkl. Doppelmeldungen
4. RESULTATE DER LAUFENDEN STUDIEN

4.1 Akute schlaffe Lähmungen

Hintergrund

<table>
<thead>
<tr>
<th>Tabelle 2</th>
<th>Abgeschlossene und laufende SPSU-Studien</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dauer</td>
</tr>
<tr>
<td>Laufende Studien</td>
<td></td>
</tr>
<tr>
<td>Akute schlaffe Lähmung</td>
<td>1/1995 läuft weiter</td>
</tr>
<tr>
<td>Kawasaki-Syndrom</td>
<td>3/2013 bis 02/2019</td>
</tr>
<tr>
<td>Aktive Tuberkulose</td>
<td>12/2013 läuft weiter</td>
</tr>
<tr>
<td>Kongenitaler Zyтомegalievirus</td>
<td>4/2016 läuft weiter</td>
</tr>
<tr>
<td>Neonatale Listeriose</td>
<td>1/2017 läuft weiter</td>
</tr>
<tr>
<td>Invasive Infektion mit Gruppe A Streptokokken (iGAS)</td>
<td>12/2017 läuft weiter</td>
</tr>
<tr>
<td>Vitamin-K-Mangelblutung</td>
<td>9/2018 läuft weiter</td>
</tr>
</tbody>
</table>

Abgeschlossene Studien		
Zyst. periventrikuläre Leukomalazie	1/1996 bis 12/1997	48
Neuralkerndefekt	1/2001 bis 12/2007	258
Schütteltrauma	7/2002 bis 6/2007	50
Neonatale Herpes	7/2002 bis 6/2008	5
Schwere Hyperbilirubinämie	10/2006 bis 12/2011	172
Extended-Spectrum-Beta-Lactamase-(ESBL-)produzierender gramneg. Erreger	7/2008 bis 6/2012	403
Mycoplasma-pneumoniae-Enzephalitis	7/2013 bis 06/2015	0
Harnstoffzylindedefekt	1/2012 bis 12/2015	5
Kongenitale Röteln	1/1995 bis 12/2016	2
ÜBERTRAGBARE KRANKHEITEN

Die WHO definiert zwei Qualitätsindikatoren für diese Überwachung:
- Die Rate der erfassten Fälle von ASL sollte bei Kindern unter 15 Jahren mindestens 1/100 000 betragen.
- Der Anteil der ASL-Fälle mit zwei Stuhluntersuchungen auf Polioviren im Abstand von 24 bis 48 Stunden sollte mindestens 80 % betragen.

Ziele der Studie
- Der Nachweis, dass die Schweiz poliofrei ist, sowie
die Sensibilisierung der Ärzteschaft für die Poliomyelitis.

Alle Fälle von ASL sind auf Polioviren zu untersuchen [1]. Dadurch sollen epidemiologische, klinische und mikrobiologische Charakteristika der ASL beschrieben werden.

Falldefinition
Klinische Symptomatik bei einem Kind unter 16 Jahren:
- akutes Auftreten einer schlaffen Lähmung in einer oder mehreren Extremitäten mit abgeschwächten oder fehlenden Sehnenreflexen oder
- akutes Auftreten einer Bulbärparalyse.

Resultate

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Total ASL (≤ 15 J.)</th>
<th>Total ASL «Non Polio»</th>
<th>Rate ASL total (pro 100 000)</th>
<th>Total ASL mit ≥1 Stuhlproben</th>
<th>% der ASL-Fälle mit ≥1 Stuhluntersuchung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>17</td>
<td>17</td>
<td>1.3</td>
<td>9/0</td>
<td>53</td>
</tr>
<tr>
<td>2017</td>
<td>8</td>
<td>8</td>
<td>0.6</td>
<td>2/0</td>
<td>25</td>
</tr>
<tr>
<td>2016</td>
<td>25</td>
<td>25</td>
<td>1.9</td>
<td>12/2</td>
<td>56</td>
</tr>
<tr>
<td>2015</td>
<td>8</td>
<td>8</td>
<td>0.7</td>
<td>1/2</td>
<td>38</td>
</tr>
<tr>
<td>2014</td>
<td>9</td>
<td>9</td>
<td>0.7</td>
<td>2/0</td>
<td>22</td>
</tr>
<tr>
<td>2013</td>
<td>9</td>
<td>9</td>
<td>0.7</td>
<td>0/1</td>
<td>11</td>
</tr>
<tr>
<td>2012</td>
<td>8</td>
<td>8</td>
<td>0.7</td>
<td>1/5</td>
<td>75</td>
</tr>
<tr>
<td>2011</td>
<td>3</td>
<td>3</td>
<td>0.3</td>
<td>2/2</td>
<td>67</td>
</tr>
<tr>
<td>2010</td>
<td>9</td>
<td>9</td>
<td>0.8</td>
<td>5/4</td>
<td>55</td>
</tr>
<tr>
<td>2009</td>
<td>7</td>
<td>7</td>
<td>0.6</td>
<td>4/3</td>
<td>57</td>
</tr>
<tr>
<td>2008</td>
<td>10</td>
<td>10</td>
<td>1.0</td>
<td>0/3</td>
<td>30</td>
</tr>
<tr>
<td>2007</td>
<td>19</td>
<td>19</td>
<td>1.6</td>
<td>4/3</td>
<td>21</td>
</tr>
<tr>
<td>2006</td>
<td>19</td>
<td>19</td>
<td>1.6</td>
<td>3/0</td>
<td>16</td>
</tr>
<tr>
<td>2005</td>
<td>7</td>
<td>7</td>
<td>0.6</td>
<td>1/1</td>
<td>29</td>
</tr>
<tr>
<td>2004</td>
<td>12</td>
<td>12</td>
<td>1.0</td>
<td>7/5</td>
<td>58</td>
</tr>
<tr>
<td>2003</td>
<td>16</td>
<td>14</td>
<td>1.1</td>
<td>8/4</td>
<td>57</td>
</tr>
<tr>
<td>2002</td>
<td>14</td>
<td>12</td>
<td>1.0</td>
<td>10/5</td>
<td>83</td>
</tr>
<tr>
<td>2001</td>
<td>15</td>
<td>10</td>
<td>0.9</td>
<td>4/2</td>
<td>40</td>
</tr>
<tr>
<td>2000</td>
<td>12</td>
<td>12</td>
<td>1.0</td>
<td>9/6</td>
<td>75</td>
</tr>
<tr>
<td>1999</td>
<td>8</td>
<td>7</td>
<td>0.6</td>
<td>2/1</td>
<td>29</td>
</tr>
<tr>
<td>1998</td>
<td>8</td>
<td>7</td>
<td>0.6</td>
<td>3/0</td>
<td>43</td>
</tr>
<tr>
<td>1997</td>
<td>14</td>
<td>13</td>
<td>1.1</td>
<td>3/1</td>
<td>23</td>
</tr>
<tr>
<td>1996</td>
<td>10</td>
<td>8</td>
<td>0.9</td>
<td>3/0</td>
<td>38</td>
</tr>
<tr>
<td>1995</td>
<td>10</td>
<td>8</td>
<td>0.9</td>
<td>4/0</td>
<td>50</td>
</tr>
</tbody>
</table>
1.3 Fälle auf 100 000 Einwohner und Jahr. In 9 Fällen wurde mindestens eine Stuhlprobe untersucht. Dies entspricht 53%. Wie in den Vorjahren erreicht die Schweiz auch 2018 die Qualitätsvorgaben der WHO nicht vollständig (Tabelle 3). Es wurden zu wenig Stuhlproben auf Enteroviren bzw. Polioviren untersucht.

Schlussfolgerungen
Eine Weiterverbreitung von allfällig importierten Polioviren muss unter allen Umständen vermieden werden. Deshalb empfiehlt das BAG in Anlehnung an die WHO folgende Massnahmen:
- Erreichen einer hohen Durchimpfung;
- Umsetzung einer qualitativ hochstehenden, aktiven Überwachung, damit allfällig importierte Polioviren oder zirkulierende Impfviren schnell entdeckt werden;
- sichere Lagerung und sicherer Umgang mit Polioviren in Laboratorien mit einem adäquaten Sicherheitsniveau.

Da die Schweiz den Qualitätsvorgaben der WHO punkto Stuhluntersuchungen nicht genügt, werden die Kliniken deshalb wieder intensiver auf die Notwendigkeit hingewiesen, dass bei allen Fällen, die die Einschlusskriterien erfüllen, mindestens eine Stuhlprobe auf Polioviren zu untersuchen ist. In Anbetracht der hohen Qualität der schweizerischen Laboratorien betrachtet das BAG die Untersuchung von einer Stuhlprobe als ausreichend. Die Kosten übernimmt das BAG. Stuhlproben sind an das Nationale Referenzlabor für Poliomyelitis (Institut für Medizinische Mikrobiologie, Petersplatz 10, 4003 Basel) zu senden.

Die Polioimpfung wird für alle nicht geimpften Personen unabhängig vom Alter empfohlen. Reisende, die sich in Endemiegebiete begeben, sollten ihren Impfstatus überprüfen und für die nötigen Auffrisch- oder Nachholimpfungen sorgen. Im Jahr 2018 galten Afghanistan und Pakistan sowie Nigeria als Endemiegebiete.

4.2 Pertussis
Hintergrund

Ziele der Studie

Meldekriterien
Zu melden sind alle Hospitalisationen von Kindern unter 16 Jahren mit der klinischen Diagnose Pertussis.

Falldefinition
Klinisches Bild:
Klinisches Bild vereinbar mit Keuchhusten, d.h.
- a) mindestens 14 Tage andauernder Husten mit mindestens einem der folgenden Symptome ohne andere erkennbare Ursache: Hustenanfälle, Keuchen beim Einatmen, Erbrechen nach dem Husten oder
- b) Apnoen bei Säuglingen (< 1 Jahr alt) unabhängig vom Vorhandensein von Husten und dessen Dauer.

Laborkriterien:
1) Nachweis von *Bordetella pertussis* oder von *B. parapertussis* mittels PCR oder
2) Kultur von *B. pertussis* oder von *B. parapertussis* oder
3) Nachweis von spezifischen Antikörpern gegen *B. pertussis* oder *B. parapertussis* Antigene mittels Serologie.

Möglicher Fall:
klinischer Fall oder Laborkriterien erfüllt, aber klinische Kriterien nicht vollständig erfüllt.

Wahrscheinlicher Fall:
Klinischer Fall, der einen epidemiologischen Zusammenhang mit einem sicheren Fall aufweist (d.h. Kontakt zu einem sicheren Fall im Zeitraum von 4 bis 21 Tagen vor eigenem Krankheitsbeginn).

Sicherer Fall:
Klinischer Fall, der die Laborkriterien erfüllt.
Resultate
Im Jahr 2018 wurden 27 Fälle von Keuchhusten bei Kindern <16 Jahren registriert. Eine detaillierte Ergänzungsmeldung liegt in 26 Fällen vor. Davon sind neun ambulante Fälle ausgeschlossen worden. Die berücksichtigten 17 Fälle waren alle mittels Polymerase-Kettenreaktion aus isolierter bakterieller DNS bestätigt. In 14 Fällen wurde in Spitallaboratorien B. pertussis, in zwei Fällen B. parapertussis gefunden und in einem Fall fehlt die Angabe, welcher Erreger gefunden wurde. Einer der 17 Fälle (6%) erfüllte die klinische Falldefinition nicht, weil die gesamte Hustendauer kürzer als 14 Tage blieb. Es wiesen alle Patienten mit unbekannter Hustendauer (n = 2) mindestens eines der drei anderen charakteristischen Symptome eines Keuchhustens auf und wurden deshalb als sichere Fälle gewertet. Der eine laborbestätigte Fall, welcher die klinische Falldefinition nicht vollständig erfüllte, wurde in der Tabelle 1 als möglicher Fall klassifiziert.

Tabelle 4:

SPSU 2018: Charakteristika der 17 gemeldeten Patienten mit Pertussis

<table>
<thead>
<tr>
<th>Charakteristik</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td>13</td>
<td>76</td>
</tr>
<tr>
<td>Weiblich</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>Laborbestätigung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Alter bei Krankheitsbeginn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1 Monat</td>
<td>7</td>
<td>41</td>
</tr>
<tr>
<td>2–3 Monate</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>4–5 Monate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6–11 Monate</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>12–23 Monate</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>>24 Monate</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>Totale Hospitalisationsdauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–3 Tage</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>4–7 Tage</td>
<td>8</td>
<td>47</td>
</tr>
<tr>
<td>8–14 Tage</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>15–21 Tage</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>>21 Tage</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wahrscheinliche Infektionsquelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschwister</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Eltern</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>Eltern und Geschwister</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Andere*</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Unbekannt</td>
<td>8</td>
<td>47</td>
</tr>
<tr>
<td>Symptome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hustenanfälle</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>10</td>
<td>59</td>
</tr>
<tr>
<td>Zyanose</td>
<td>10</td>
<td>59</td>
</tr>
<tr>
<td>Atemnot</td>
<td>12</td>
<td>71</td>
</tr>
<tr>
<td>Fieber</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Apnoe</td>
<td>8</td>
<td>47</td>
</tr>
<tr>
<td>Erbrechen nach Hustenanfall</td>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>Juchzendes Inspirium</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>Schlafprobleme</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>Komplikationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonie</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>Konvulsion</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Enzephalitis</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Ötitis</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Impfstatus, Patienten im Alter von 2 bis 6 Monaten bei Spitaleneintritt (n = 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Dosen</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>1 oder 2 Dosen</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>≥3 Dosen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Impfstatus, Patienten im Alter von > 6 Monaten bei Spitaleneintritt (n = 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Dosen</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>1 oder 2 Dosen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>≥3 Dosen</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

Die Fälle mit Mehrfachexpositionen, in die ein Elternteil oder ein Geschwister und ein weiterer Kontakt ausserhalb der Familie involviert waren, sind hier nicht noch einmal erfasst.

Schlussfolgerungen

Die Anzahl hospitalisierter Kinder mit bestätigtem Keuchhusten im Jahr 2018 (n=17) lag tiefer als in den Vorjahren 2017 (n=37), 2016 (n=46) und 2015 (n=25) sowie ebenso unter dem verzeichneten Jahresdurchschnitt zwischen 2006 und 2010 (n=33).

Die Ergebnisse dieser Studie bilden eine der Grundlagen für die Evaluation der Empfehlungen zur Pertussis Impfung durch die Eidgenössische Kommission für Impffragen.

Literatur

4.3 Kawasaki-Syndrom – Abschlussbericht

Hintergrund

Ziele der Studie

Sammlung der epidemiologischen, klinischen, therapeutischen Daten sowie der Kurz- und Langzeit-Prognose (ein Jahr und fünf Jahre nach der Diagnosestellung) des Kawasaki-Syndroms in der Schweiz.

Falldefinition

Kinder < 17 Jahre alt mit der Diagnose eines Kawasaki-Syndroms. Das Kawasaki-Syndrom ist nach den Kriterien der Leitlinien der American Heart Association AHA) [1] für die Diagnosestellung und Behandlung des kompletten und inkompletten Kawasaki-Syndroms wie folgt definiert:

Komplettes Kawasaki-Syndrom:

- Fieber > 38.5° während > = 5 Tage und mindestens vier der fünf klinischen Zeichen:
 - Bilaterale, bulbäre, nicht suppurative Konjunktivitis
 - Unilaterale, nicht purulente, zervikale Adenopathie, > 1.5 cm
 - Hautausschlag
 - Veränderungen von Lippen und Mund (rissige Lippen, Erdbeerzungen, geröteter Rachen und Mund)
 - Veränderungen von Händen und Füssen

Resultate

Ein Jahr nach der Diagnose sind noch 13.3 % pathologische Echokardiogramme zu verzeichnen, wobei unter 239 betreuenden Kindern nur zwei Fälle von rekurrentem Kawasaki-Syndrom vorliegen.

Schlussfolgerungen

Aktuell wird für diese Studie die Datensammlung fünf Jahre nach der Diagnose fortgesetzt, diese läuft seit März 2018.

Literatur

Prof. Dr. med. Nicole Sekarski, CHUV, Pädiatrische Kardiologie, Rue du Bugnon 46, 1011 Lausanne, nicole.sekarski@chuv.ch
4.4 Aktive Tuberkulose

Hintergrund
Die aktive Tuberkulose (TB) bei Kindern und Jugendlichen ist heute in der Schweiz eine seltene Erkrankung mit jährlich zwischen 20 und 30 Fällen. Sie untersteht der Meldepflicht [1]. Die Daten, die das Bundesamt für Gesundheit (BAG) erhebt sind limitiert und epidemiologische Informationen, die insbesondere für die Diagnose und Therapie der TB bei Kindern wichtig sind, können nicht erhoben werden. In den letzten Jahren wurde zunehmend klar, dass epidemiologische Daten der aktiven TB in Europa sehr lückenhaft sind und dass Ergebnisse aus Ländern mit hohen TB-Inzidenzen nur bedingt auf unsere Patienten anwendbar sind.

Ziele der Studie

Falldefinition
Meldung aller Kinder (bis max. 16 Jahre) mit TB mit:

- kulturellem oder molekularbiologischem Nachweis von Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae oder des Mycobacterium-tuberculosis-Komplex und/oder

- bei denen bei Verdacht auf Tuberkulose eine Behandlung mit mindestens drei antituberkulösen Medikamenten begonnen wurde.

Resultate

Epidemiologie und Grund der Abklärung
Seit Dezember 2013 werden in der SPSU die Fälle der aktiven Tuberkulose (TB) bei Kindern und Jugendlichen ≤ 16 Jahren erfasst. Im Jahre 2018 wurden 35 Fälle gemeldet und bei 21 (60%) Fällen lag eine detaillierte Meldung vor. Dabei gab es drei Doppelmeldungen und ein Fall entsprach nicht der Falldefinition und wurde nachträglich als latente Tuberkulose klassifiziert. In die aktuelle Analyse wurden deshalb Daten von 17 gemeldeten Fällen eingeschlossen.

Die gemeldeten Kinder und Jugendlichen waren zwischen 0.6 und 15.3 (Median = 6.1) Jahre alt und 10 (59%) waren männlich. Sechs (35%) Kinder waren unter fünf Jahre alt. Die gemeldeten Fälle waren in fünf Ländern geboren: acht (47%) in der Schweiz, vier (24%) in Eritrea, zwei (12%) im Sudan, zwei (12%) in Somalia, und eines (6%) in Peru. Bei den in der Schweiz geborenen Kindern war in sieben Fällen mindestens ein Elternteil aus dem Ausland in die Schweiz eingewandert.

Als Grund für die Abklärung wurden folgende Daten erhoben: Umgebungsuntersuchung bei neun (53%), und Symptome bei acht (47%) Fällen; wobei bei sechs dieser acht Fälle die Symptome im Rahmen einer Untersuchung Asylsuchender erhoben wurden. Eine Ansteckungsquelle konnte in 11 (65%) Fällen eruiert werden. Acht (47%) gemeldete Fälle hatten keine BCG-Impfung erhalten, zwei (12%) hatten eine Impfnarbe und bei sieben (41%) war der der Impfstatus unklar. Eine serologische Untersuchung für Humanes Immundefizienz Virus (HIV) war bei acht (47%) der Meldungen gemacht worden, alle mit negativem Resultat.

Tuberkulose Formen, Beschwerden und bildgebende Diagnostik
Bei allen 17 Fällen handelte es sich um eine Lungentuberkulose in einem Fall zusätzlich mit pleuralen Befall. Fünf (29%) der analysierten Fälle waren asymptomatisch, alle 17 Fälle wurden im Rahmen einer Umgebungsuntersuchung diagnostiziert. Jedoch hatten weitere vier Fälle aus Umgebungsuntersuchungen bei der Befragung Symptome: in zwei Fällen chronischer Husten und in je einem Fall fehlende Gewichtszunahme oder Gewichtsverlust in fünf (29%) Fällen.

Alle gemeldeten Fälle erhielten mindestens eine Röntgenaufnahme des Thorax, in sieben Fällen (41%) wurde zusätzlich eine Computertomographie des Thorax veranlasst. Die beschriebenen pathologischen Befunde waren am häufigsten eine hiläre Lymphadenopathie in 13 (76%) und eine pulmonale Konsolidation in 14 (82%) Fällen.

Immunodiagnostische Testung
Ein Tuberkulin-Haut-Test (THT) wurde bei fünf (29%) Fällen, ein Interferon Gamma Release Assay (T.Spot.TB und/oder Quantiferon) bei 15 (88%) Fällen gemacht. Im THT hatten 4/5 getesteten Fälle (80%) ein positives Resultat, im IGRA waren 12/15 (80%) positiv. Bei den IGRA Resultaten waren zwei Resultate als unklar («indeterminate») gemeldet.

Sampling, Kultur und Resistenzprüfung
Folgende Arten von Proben wurden abgenommen: 12 Magensaftspirale, zwei Bronchoalveolare Lavagen, drei Sputa, drei induzierte Sputa, drei Biopsien oder Punktate und eine Blutkultur. Total waren 10 Fälle (59%) in der Kultur bestätigt, zwei Fälle (12%) in der PCR nachgewiesen und in fünf Fällen (29%) waren Kultur und/oder PCR negativ. Es lagen keine Resistenzenn vor.

Therapie
Initial wurde bei 13 Fällen (76%) mit einer Dreier-Kombination (Isoniazid, Rifampicin und Pyrazinamid) und bei vier Fällen (24%) mit einer Viererkombination (zusätzlich Ethambutol) behandelt. Die medizinen täglichen Dosierungen waren wie folgt: Isoniazid 13 mg/kg, Rifampicin 17 mg/kg, Pyrazinamid 32 mg/kg und Ethambutol 23 mg/kg. Es gab keine zu tiefen oder zu hohen Dosierungen. In sechs Fällen (35%) wurden Präparate mit Fixdosierungen verschrieben.
ÜBERTRAGBARE KRANKHEITEN

Übertragbare Krankheiten

Ein systematisches Screening auf eine mütterliche Serokonversion während der Schwangerschaft wird derzeit in der Schweiz (gynécologie suisse, Expertenbrief Nr. 47) oder weltweit nicht empfohlen [4]. Es gibt nämlich kaum Möglichkeiten, einer Übertragung der Krankheit von der Mutter auf das Kind vorzubeugen. Aus biologischer Sicht ist es sehr schwierig, eine Erstinfektion von einer Reinfektion oder einer Reaktivierung zu unterscheiden, und die Immunität der Mutter vor der Schwangerschaft schützt nicht vor einer Reinfektion oder Reaktivierung: zwei Drittel der infizierten Mütter wurden neurosensorische und entwicklungsbezogene Spätfolgen verzeichnen [1,2,4].

Ziele der Studie

In der Schweiz liegen derzeit keine Daten zu den kongenitalen CMV-Infektionen (KCMV) vor. Daten zur Diagnostik sowie zur primären und sekundären Morbidität sind jedoch wichtig, damit Empfehlungen betreffend Screening und Behandlung abgegeben werden können. Seit dem 1. April 2016 erfasst eine Studie im Rahmen der SPSU die bestätigten kCMV-Fälle sowie die Verdachtsfälle. Die Studie soll die Prävalenz der lebenden Neugeborenen mit bestätigten kCMV-Fällen sowie die Verdachtsfälle messen und die Verdachtsfälle verfolgen. Ausserdem soll ein nationales Register zur epidemiologischen Überwachung eingerichtet und die Auswirkungen dieser kongenitalen Infektion auf die psychomotorische Entwicklung der Kinder bestimmt werden. Mit der Studie könnten auch die Möglichkeit zur Organisation eines systematischen kCMV-Screenings bei der Geburt geprüft und die soziodemografischen Merkmale dieser Patientinnen und Patienten in der Schweiz ermittelt werden.

Tabelle 5
Vergleiche der SPSU-Meldungen seit 2014

<table>
<thead>
<tr>
<th>Jahr</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl gemeldete Fälle</td>
<td>14</td>
<td>25</td>
<td>40</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>Anzahl ausgewertete Fälle</td>
<td>12</td>
<td>22</td>
<td>36</td>
<td>29</td>
<td>17</td>
</tr>
<tr>
<td>% ausgewertete Fälle</td>
<td>85</td>
<td>88</td>
<td>90</td>
<td>78</td>
<td>48</td>
</tr>
<tr>
<td>Medianes Alter (Jahren)</td>
<td>6.0</td>
<td>9.5</td>
<td>9.0</td>
<td>6.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Im Ausland geboren (%)</td>
<td>54</td>
<td>36</td>
<td>84</td>
<td>45</td>
<td>53</td>
</tr>
<tr>
<td>Auständische Herkunft (%)</td>
<td>92</td>
<td>95</td>
<td>100</td>
<td>90</td>
<td>94</td>
</tr>
<tr>
<td>Pulmonale TB (%)</td>
<td>72</td>
<td>95</td>
<td>86</td>
<td>86</td>
<td>100</td>
</tr>
<tr>
<td>Kultur und/oder PCR pos (%)</td>
<td>75</td>
<td>42</td>
<td>58</td>
<td>35</td>
<td>71</td>
</tr>
<tr>
<td>Anzahl INH oder RIF Resistenz</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anzahl MDR-TB</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Schlussfolgerung

Ein systematisches Screening auf eine mütterliche Serokonversion während der Schwangerschaft wird derzeit in der Schweiz (gynécologie suisse, Expertenbrief Nr. 47) oder weltweit nicht empfohlen [4]. Es gibt nämlich kaum Möglichkeiten, einer Übertragung der Krankheit von der Mutter auf das Kind vorzubeugen. Aus biologischer Sicht ist es sehr schwierig, eine Erstinfektion von einer Reinfektion oder einer Reaktivierung zu unterscheiden, und die Immunität der Mutter vor der Schwangerschaft schützt nicht vor einer Reinfektion oder Reaktivierung: zwei Drittel der infizierten Müttern, die zu Beginn der Schwangerschaft CMV-seropositiv waren [3,4].

Ziel der Studie

In der Schweiz liegen derzeit keine Daten zu den kongenitalen CMV-Infektionen (KCMV) vor. Daten zur Diagnostik sowie zur primären und sekundären Morbidität sind jedoch wichtig, damit Empfehlungen betreffend Screening und Behandlung abgegeben werden können. Seit dem 1. April 2016 erfasst eine Studie im Rahmen der SPSU die bestätigten kCMV-Fälle sowie die Verdachtsfälle. Die Studie soll die Prävalenz der lebenden Neugeborenen mit bestätigter KCMV-Infektion messen und verfolgen. Ausserdem soll ein nationales Register zur epidemiologischen Überwachung eingerichtet und die Auswirkungen dieser kongenitalen Infektion auf die psychomotorische Entwicklung der Kinder bestimmt werden. Mit der Studie könnten auch die Möglichkeit zur Organisation eines systematischen kCMV-Screenings bei der Geburt geprüft und die soziodemografischen Merkmale dieser Patientinnen und Patienten in der Schweiz ermittelt werden.

Literatur

4.5 Kongenitaler Zytomegalievirus

Hintergrund

Die Zytomegalie (CMV-Infektion) wird durch ein Virus aus der Familie der Herpesviridae verursacht. Es handelt sich um eine verbreitete Infektion bei Kindern und Erwachsenen, deren Seroprävalenz weltweit 40–90% beträgt [1] und um die am häufigsten übertragene vorgeburtliche oder kongenitale Infektion; sie erreicht bei den Lebendgeburten eine Prävalenz von 0,2–2% weltweit und von bis zu 6,1% in Entwicklungsländern [1,2,4].

10–15% der betroffenen Neugeborenen zeigen Symptome bei der Geburt. Die wichtigsten klinischen Anzeichen sind Thorakozytopenie (verminderte Anzahl Blutplättchen), Hepatitis, Hepatosplenomegalie (Vergrößerung von Leber und Milz), Chorioretinitis (Ader- und Netzhautentzündung), Mikrozephalie und intrauterine Wachstums retardierung. Bei der Hälfte der Kinder mit Symptomen bei der Geburt, aber auch bei 14% der infizierten, jedoch bei der Geburt symptomfreien Kindern, werden neurosensorische und entwicklungsbezogene Spätfolgen verzeichnet [1,2,4].

Ein systematisches Screening auf eine mütterliche Serokonversion während der Schwangerschaft wird derzeit in der Schweiz (gynécologie suisse, Expertenbrief Nr. 47) oder weltweit nicht empfohlen [4]. Es gibt nämlich kaum Möglichkeiten, einer Übertragung der Krankheit von der Mutter auf das Kind vorzubeugen. Aus biologischer Sicht ist es sehr schwierig, eine Erstinfektion von einer Reinfektion oder einer Reaktivierung zu unterscheiden, und die Immunität der Mutter vor der Schwangerschaft schützt nicht vor einer Reinfektion oder Reaktivierung: zwei Drittel der infizierten Neugeborenen stammen von Müttern, die zu Beginn der Schwangerschaft CMV-seropositiv waren [3,4].

Ziel der Studie

In der Schweiz liegen derzeit keine Daten zu den kongenitalen CMV-Infektionen (KCMV) vor. Daten zur Diagnostik sowie zur primären und sekundären Morbidität sind jedoch wichtig, damit Empfehlungen betreffend Screening und Behandlung abgegeben werden können. Seit dem 1. April 2016 erfasst eine Studie im Rahmen der SPSU die bestätigten kCMV-Fälle sowie die Verdachtsfälle. Die Studie soll die Prävalenz der lebenden Neugeborenen mit bestätigter KCMV-Infektion messen und verfolgen. Ausserdem soll ein nationales Register zur epidemiologischen Überwachung eingerichtet und die Auswirkungen dieser kongenitalen Infektion auf die psychomotorische Entwicklung der Kinder bestimmt werden. Mit der Studie könnten auch die Möglichkeit zur Organisation eines systematischen kCMV-Screenings bei der Geburt geprüft und die soziodemografischen Merkmale dieser Patientinnen und Patienten in der Schweiz ermittelt werden.

Studienleitung

PD Dr. med. Nicole Ritz, Universitäts-Kinderspital beider Basel (UKBB), Infektiologie und Vakzinologie, Spitalstrasse 33, 4056 Basel, nicole.ritz@unibas.ch

47/19 ÜBERTRAGBARE KRANKHEITEN
Falldefinition
Bestätigte kCMV-Fälle: Neugeborene mit Inutero- oder Exu-tero-kCMV-Diagnose durch PCR vor der dritten Lebenswoche (Fruchtwasser, Nabelschnurblut, Blut/Urin des Säuglings), direkte Isolierung des CMV mittels Kultur oder Antigennachweis.
kCMV-Verdachtsfälle: positive IgM-Serologie oder Isolierung des CMV durch PCR (Blut, Urin) nach der dritten Lebenswoche, aber vor dem ersten Lebensjahr, mit zu kCMV passenden Symptomen (Frühgeburten, Mikrozephalie, intrazerebrale Verkalkungen usw.)

Resultate
2018 wurden 24 Fälle verzeichnet, d. h. 2,8 Fälle auf 10 000 Geburten (2018 gab es schweizweit 85 253 Geburten). Die daraus gewonnenen klinischen Daten sind für eine statistische Auswer- tung unzureichend, aber es kann bereits festgestellt werden, dass 10 (13 %) der 75 seit Studienbeginn gemeldeten Kinder zum Zeitpunkt der Fallanmeldung keine Komplikation und 65 mindes-tens eine Komplikation aufwiesen. Von den 65 symptomatischen Kindern erhielten 29 (45 %) eine antivirale Behandlung.

Die bei der Geburt erfassten Komplikationen werden in unten-stehender Grafik 1 dargestellt.

Grafik 1:
Anzahl Komplikationen zum Zeitpunkt der Diagnose, alle Kinder seit Studienbeginn, n = 75, (Mehrfachnennungen möglich)

Von insgesamt 50 Patientinnen und Patienten stehen die 1-Jahres-Follow-up-Daten zur Verfügung. 17 von diesen 50 Kindern zeigen noch Symptome und ein Todesfall ist zu beklagen. Die ein Jahr nach der Geburt registrierten Erkrankungen werden in nachfolgender Grafik 2 aufgeführt.

Grafik 2:
Festgestellte Anomalien 1 Jahr nach der Geburt (Mehrfä-chennennungen von Symptomen pro Kind sind möglich und werden einzeln gezählt):

Schlussfolgerung

Studienleitung
Prof. Dr. Klara Posfay Barbe, Hôpitaux Universitaires de Genève, médecin–chef de service pédiatrie générale, responsable de l’Unité de maladies infectieuses pédiatriques, Hôpital des Enfants, 6, rue Willy-Donzé, 1211 Genève 14, Klara.PosfayBarbe@hcuge.ch

Literatur
4.6 Neonatale Listeriose

Hintergrund

Ziele der Studie

Erhebung epidemiologischer Daten zur Listeriose bei Neugeborenen und Säuglingen bis zum Alter von sechs Monaten in der Schweiz:

1) Erhebung von:
 a. demografischen Angaben (Alter, Geschlecht usw.)
 b. Inzidenz
 c. Manifestation
 d. Behandlung und klinischem Verlauf
 e. Krankheitsfolgen
 f. Exposition

Schlussfolgerungen

Resultate

1) Sicherer Fall:
 a. Positive Listerienkultur von einer normalerweise sterilen Probe wie Blut, Liquor oder Pleuraflüssigkeit; oder
 b. Positive Listerienkultur von der Plazenta beim Vorliegen von mit Listeriose kompatiblen klinischen Symptomen (Sepsis, Meningitis, Atemnot usw.).

2) Wahrscheinlicher Fall:
 a. Positive PCR auf Listerien aus einer normalerweise sterilen Probe oder der Plazenta bei Vorliegen von mit Listeriose kompatiblen klinischen Symptomen (Sepsis, Meningitis, Atemnot usw.).
ÜBERTRAGBARE KRANKHEITEN

Studienleitung
Prof. Dr. Klara Posfay Barbe, Hôpitaux Universitaires de Genève, Médecin-chef de service pédiatrie générale, responsable de l’unité de maladies infectieuses pédiatriques, Specialist FMH en maladies infectieuses, Hôpital des Enfants, 6, rue Willy-Donzé, 1211 Genève 14.
Klara.PosfayBarbe@hcuge.ch

Marianne Jost, Bundesamt für Gesundheit, Abteilung Übertragbare Krankheiten, 3003 Bern, marianne.jost@bag.admin.ch

Literatur
4. Okike et al. Do we really need to worry about Listeria in newborn infants? The Pediatric Infectious Disease Journal. Volume 32, Number 4, April 2013

4.7 Invasive Infektion mit Gruppe A Streptokokken (iGAS)

Hintergrund

Ziele der Studie
Sammlung und Auswertung von Daten zu iGAS bei Kindern in der Schweiz ≤ 16 Jahre bezüglich
• Inzidenz
• Saisonalität
• Altersverteilung

Tabelle 6
Charakteristika der gemeldeten Fälle von neonataler Listeriose nach Jahr, April 2017 bis Dezember 2018

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl Fälle (n)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Inzidenz auf 100.000 Lebendgeburten</td>
<td>4.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Geschlecht (n):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>weiblich</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Prenatal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestationsalter bei Geburt</td>
<td>34–39</td>
<td>33</td>
</tr>
<tr>
<td>(Schwangerschaftwochen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geburtsgewicht (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2220–3770</td>
<td>1450–1840</td>
<td></td>
</tr>
<tr>
<td>Geburtsart (n):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spontangeburt</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sectio caesarea</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Besonderheiten (n):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mekonium im Fruchtwasser</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mütterliche Antibiotikagabe < 4 Stunden vor Geburt</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Erhöhte mütterliche Leukozytenwerte</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Manifestation

Alter bei Symptombeginn (Tage)	<1–8	<1
Symptome (n):		
Sepsis	4	2
Meningitis oder Meningoenzephalitis	4	1
Haut und Schleimhautläsionen		
Form der neonatalen Listeriose (n):	2	2
Frühoform (Symptombeginn <7 Lebenstage)	2	
Spätoform (Symptombeginn >7 Lebenstage)	2	

Behandlung

Therapie mittels 2–3 Antibiotika (n):		
Amoxicillin	3	2
Co-Amoxicillin	1	
Gentamycin	1	2
Tobramycin	3	
Dauer der Antibiotikatherapie (Tage)	5–21	14
Intubation	1	
Krankheitsfolgen (n):		
geheilt (ohne bekannte Krankheitsfolgen)	4	2

Exposition

Übertragung (n):		
Mutter-Kind-Übertragung	1	2
unbekannt	3	
• Klinische Ausprägungen und Komplikationen
• Behandlung
• Risikofaktoren (Grunderkrankung, Varizellen, Medikamente (z.B. Ibuprofen, Paracetamol))
• Rückfallquote
• Morbidität und Mortalität

Zusätzlich ist geplant, die iGAS-Stämme in einem ersten Schritt nur zur Aufbewahrung zu sammeln, aber zu einem späteren Zeitpunkt soll in einem zweiten Schritt die emm-Typisierung erfolgen. Dazu ist ein separates Projekt vorgesehen.

Falldefinition
Bestätigter Fall
Isolation von Gruppe-A-Streptokokken = GAS = Streptococcus pyogenes aus einer normalerweise sterilen Probe (Kultur, Antigen oder PCR) wie:
• Blut
• Rückenmarkflüssigkeit
• Steriles Punktat (Pleura-, Gelenks- oder Perikardflüssigkeit)
• Muskel-/Knochengewebe (tiefere Gewebeschichten, chirurgische Probe)

Wahrscheinlicher Fall
Schweres klinisches Krankheitsbild* ohne alternative Diagnose UND GAS-Isolation aus einer nicht sterilen Probe (Kultur, Antigen oder PCR)

• Schweres klinisches Krankheitsbild
 1. Toxisches Schocksyndrom (systolischer Blutdruck < 5. Prozentile für Alter)
 PLUS ≥ 2 der folgenden Kriterien:
 a) Niereninsuffizienz (Kreatinin > 2 × Obergrenze der normalen Bandbreite für Alter)
 b) Koagulopathie/Gerinnungsstörung (Thrombozyten < 100 G/L oder klinische Anzeichen einer disseminierten intravasalen Gerinnung = DIC)
 c) Leberinsuffizienz (ALAT, ASAT oder Bilirubin > 2 × Obergrenze der normalen Bandbreite für Alter)
 d) Allgemeines Erythem mit/ohne nachfolgende Abgeschupfung
 e) ARDS (Acute Respiratory Distress Syndrome)
 2. Nekrotisierende Fazitis

Resultate
Im Jahr 2018 wurden insgesamt 48 Fälle von invasiven Infektionen durch Gruppe A Streptokokken bei Kindern < 16 Jahren gemeldet. Für alle Patienten konnten detaillierte Angaben mittels Fragebogen erfasst werden. Die Kinder waren zwischen 26 Tage und 15.3 Jahre alt, das mediane Alter lag bei 61 Monaten und 17 (35%) waren weiblich. Insgesamt 33 Fälle (69%) traten in den Monaten Oktober bis März auf. In 25 Fällen (51%) kam es zu einem schweren Verlauf mit Aufenthalt auf der Intensivstation. Dreizehn Patienten (27%) waren zeitweise intubiert und beatmet und in 10 Fällen (20%) wurde eine Kreislaufunterstützung mit Katecholaminen notwendig. Bei 27 Patienten (55%) war ein chirurgischer Eingriff mit therapeutischer Indikation notwendig, zwei Patienten (4%) zeigten eine nekrotisierende Fazitis. Im Berichtsjahr verstarb ein Kleinkind (Alter 26 Monate) ohne bekannte Grunderkrankung an einer iGAS-Infektion, was eine Sterblichkeit von 2% ergibt. In 33 Fällen (67%) zeigte sich eine vollständige Heilung und bei 11 Patienten (23%) wurde eine Heilung mit Residuen berichtet. In vier Fällen liegen keine Informationen über das Vorliegen von Residuen nach Spitalausgang vor. Keiner der Patienten hatte früher bereits eine iGAS-Infektion erlitten, eine Grunderkrankung war bei fünf Patienten (10%) bekannt, es handelt sich dabei um fünf verschiedene Diagnosen (Fruhgeburtslichkeit, Burkitt-Lymphom, genetische Grunderkrankung, chronische Atemwegserkrankung, EBV-Infektion). Als bekannter Risikofaktor für iGAS-Infektionen zeigte sich eine floride Varizelleninfektion in sechs Fällen (12%), kutane Verletzungen oder Operationen wurden nicht berichtet und in keinem Fall war ein enger Kontakt zu einer Person mit einer Infektion durch Gruppe A Streptokokken bekannt.

Diskussion und Schlussfolgerungen

Studienleitung
Dr. med. Anita Niederer-Loher, Ostschweizer Kinderspital, Oberärztin Infektiologie und Spitalhygiene, Claudiusstrasse 6, 9006 St. Gallen, anita.niederer@kispisg.ch

Dr. med. Christian Kahler, Ostschweizer Kinderspital, Leitender Arzt Infektiologie und Spitalhygiene, Claudiusstrasse 6, 9006 St. Gallen, christian.kahler@kispisg.ch

Literatur

5. PUBLIKATIONEN UND KONGRESSBEITRÄGE 2015–2018
– Mirjam Mäusezahl, Richard Lynn, Yvonne Zurynski, Charlotte Moore Hepburn, Mavis Duncan, Christoph Rudin. The power of surveillance data to change Public Health Policy and practice in rare paediatric conditions. 36th Annual Meeting of the European Society for Paediatric Infectious Diseases (ESPID 2018), to be held in Malmö, Sweden | May 28–June 2, 2018.
– Mäusezahl M, Rudin C, Beeli D on behalf of the SPSU-Steering committee. The Swiss Paediatric Surveillance Unit SPSU contributes to change in Public Health Policy and Practice. Oral presentation at the fPmH conference. Mai 24, 2018, Lausanne, Switzerland. Suppl 228 ad Swiss MedWkly, 2018; 148: 5.
– Sarah Huang, Bahaa Abu Raya, Marianne Jost, Robert Bortolussi, Julie Bettinger, Janet Grabowski, Thierry Lacaze, Joan Robinson, Klara Posfay Barbe, Mirjam Mäusezahl and Tobias R Kollmann. Listeriosis in neonates and infants in Switzerland and Canada. INoPSU conference @ RCPH (Royal College of paediatrics and child health) annual conference, 13–15 March 2018, Glasgow
– Sekarski N. Kawasaki disease, Posterpräsentation «Epidemiology of the Kawasaki disease in Switzerland». Kongress der Kardiopädiatrie, November 2016 in Bern.

SPSU-Komitee
Bundesamt für Gesundheit
Abteilung Übertragbare Krankheiten

6. DANK
Wir danken den Ärztinnen und Ärzten der teilnehmenden Kliniken für die zeitgerechte Zustellung der Meldungen und die wertvolle, erfreuliche Zusammenarbeit:
M. Albisetti; V. Bernet; F. Cachat; V. Colombo; P. Diebold; Z. Dovhunova, S. Fluri; M. Gebauer; M. Gehri; E. Giannoni; S. Grupe; K. Held-Egli; M. Horn; P. Imahorn; T. Karen; L. Kottanattu; B. Laubscher; H. Madlon; A. Malzacher; J. Mc Dougall; M. Mönkhoff; A. Moser; V. Muhelethaler; A. Niederer; V. Pezzoli; K. Posfay Barbe; L. Reinhard; T. Riedel; C. Rudin; M. Russo; N. Schöbi; A. Ughetto; J. Wildhaber; M. Wopmann; A. Zemmouri; S.-A. Zoubir.
Rezeptsperrung

Swissmedic, Abteilung Betäubungsmittel

Rezeptsperrung
Folgende Rezepte sind gesperrt

<table>
<thead>
<tr>
<th>Kanton</th>
<th>Block-Nr.</th>
<th>Rezept-Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bern</td>
<td></td>
<td>8056729</td>
</tr>
<tr>
<td>Genf</td>
<td></td>
<td>7896568</td>
</tr>
</tbody>
</table>
2. Und weil’s jede(r) anders liebt: Mach jetzt deinen persönlichen Safer-Sex-Check auf lovelife.ch