

Scheda informativa Laser tag

Data: 14 marzo 2024

1 In breve

Il laser tag è un'attività ricreativa nella quale i giocatori si affrontano in gruppo o singolarmente. Le partite possono svolgersi al buio in un'arena di gioco o all'aperto. I giocatori cercano di colpire gli avversari con un raggio laser non visibile. A tale scopo utilizzano un emettitore laser a forma di pistola, chiamato anche tagger, phaser o pistola laser. Per poter registrare i colpi messi a segno dagli avversari i partecipanti indossano dei sensori generalmente cuciti su un corpetto. In alcuni campi da gioco per laser tag è presente un raggio laser visibile che aiuta i giocatori a colpire l'obiettivo. I colpi messi a segno registrati dai sensori provocano l'accensione di segnali ottici e/o acustici. Alla fine della partita, i colpi registrati sono analizzati statisticamente e la prestazione dei giocatori o delle squadre è messa a confronto.

L'UFSP, insieme all'Istituto federale di metrologia METAS, ha misurato la radiazione laser cui si è esposti in un campo da gioco per laser tag. Le misurazioni mostrano che il gioco rispetta i limiti stabiliti per la radiazione laser e, se utilizzato correttamente, allo stato attuale delle conoscenze non rappresenta un pericolo per gli occhi [7]. Le seguenti raccomandazioni sono un aiuto per utilizzare i campi da gioco per laser tag in sicurezza:

Raccomandazioni relative al laser tag

- Non fissare mai un raggio laser e non puntarlo mai intenzionalmente verso gli occhi dei compagni di gioco.
- Frequentare i campi da gioco per laser tag solo a partire dai 14 anni.
- Osservare tutte le istruzioni in materia di sicurezza fornite dall'organizzatore di manifestazioni di laser tag.

2 Informazioni dettagliate

2.1 Laser tag: evoluzione e prodotti

Il primo centro per laser tag è stato inaugurato nel 1984 a Dallas negli USA [1]. Nel frattempo, il gioco è proposto in più di 20 diversi campi da gioco indoor in Svizzera [2]. Si stima che in tutta Europa vi siano 650 locali appositi. Il laser tag è conosciuto anche come lasergame, laser quest, laser evolution, laser ball, lasermaxx, lazerfun e laser attack. La tendenza più recente è rappresentata dalle tecnologie di realtà virtuale, che prevedono l'utilizzo di visori per la realtà virtuale da parte dei giocatori.

Weitere Informationen:

2.2 Equipaggiamento e dati tecnici

Per giocare a laser tag è necessario uno strumento di puntamento che viene chiamato anche tagger, phaser o pistola laser. I giocatori cercano di colpire i loro avversari con un impulso ottico che viene emesso nello spettro non visibile dell'infrarosso. Per questo motivo, tutti i giocatori indossano dei corpetti con sensori anteriori, posteriori e sulle spalle (figura 1), che riconoscono e registrano i colpi andati a segno. Per visualizzare l'andamento del gioco, inoltre, molti campi da gioco per laser tag utilizzano brevi impulsi di luce laser emessi nello spettro visibile.

Figura 1: equipaggiamento da gioco per un giocatore di laser tag con strumento di puntamento (tagger) (foto UFSP)

Nonostante il nome diffuso del gioco sia «laser tag», non sempre è utilizzato un raggio laser visibile. Per la trasmissione del segnale, per esempio, è sufficiente anche un segnale a infrarossi invisibile. Esistono numerosi fabbricanti di equipaggiamento per laser tag che hanno sviluppato le proprie tecnologie di trasmissione del segnale. Nelle seguenti sezioni sono descritte le tecnologie più frequentemente utilizzate.

2.2.1 Segnale a infrarossi

I diodi laser a infrarossi e i diodi a emissione luminosa d'infrarossi (noti anche come LED o IRED) sono molto diffusi e possono essere installati, per esempio, nei display e nei telecomandi televisivi nonché nei giocattoli. Al posto della luce visibile emettono luce infrarossa invisibile all'occhio umano. A differenza delle lampadine, che emettono luce in un'ampia banda dello spettro, i LED emettono luce caratterizzata da una banda spettrale relativamente stretta.

Analogamente a quanto avviene per un telecomando, i campi da gioco per laser tag utilizzano la radiazione infrarossa per trasmettere il segnale dal tagger al corpetto [9]. Quando un colpo è messo a segno, il segnale IR ricevuto dal corpetto è trasformato in un segnale elettrico e registrato come tale. I segnali a infrarossi inviati sono modulati secondo un codice di impulsi (in inglese «pulse-code modulation», PCM), ossia ricevono un codice unico costituito da impulsi più brevi e più lunghi nonché da pause più brevi e più lunghe [1]. Questo codice garantisce la certezza di poter attribuire un raggio a segno registrato da un sensore del corpetto in modo inequivocabile a uno specifico tagger.

La tecnologia IR offre molte possibilità per diverse varianti di gioco [1]. Per poter colpire più giocatori contemporaneamente, i tagger IR generano talvolta segnali a infrarossi invisibili fortemente diffusi che coprono al massimo una distanza di circa 5 metri. Altri tagger IR, invece, dispongono di una speciale

lente che impedisce la diffusione del segnale e permette di coprire distanze fino a 50 metri, richiedendo precisione nel colpire i sensori dell'avversario [5].

2.2.2 Segnale laser

I tagger a raggi laser generano raggi pulsati. Poiché colpire con un raggio laser largo 2 mm un sensore di dimensioni simili è quasi impossibile, il sensore per la luce sul corpetto è costituito da un reticolato di numerose sottili fibre di vetro convergenti verso un fotodiodo che rileva la radiazione laser [4]. Ciò consente di controllare con un solo fotodiodo l'intera superficie coperta dalle fibre di vetro e analizzare così gli impulsi di luce laser arrivati a segno.

Un dispositivo di controllo sul tagger conta il numero di colpi sparati, il tipo di raggio di luce e il numero di colpi messi a segno dagli altri tagger. I tagger a radiazione laser offrono, inoltre, la possibilità di conoscere la distanza da un obiettivo [8].

Finora sono stati utilizzati soprattutto raggi laser rossi con un diametro di pochi millimetri. Dato che il colore verde, rispetto al colore rosso, è percepito molto meglio a causa della maggiore sensibilità dell'occhio umano alla luce nelle frequenze relative alla luce verde, si utilizzano sempre più spesso laser verdi con un raggio di circa 13 mm di diametro. Affinché l'occhio percepisca la stessa luminosità, un raggio laser verde può avere una potenza inferiore rispetto a un raggio laser rosso con la stessa divergenza di raggio.

Generalmente è utilizzato un raggio laser di classe 1 o 2. La radiazione laser è suddivisa in diverse classi di pericolo descritte nella penultima sezione al punto 2.4.1. Nella tabella 1 sono menzionate le potenze consentite per ogni classe di laser (SN EN 60825-1:2014) [10].

Tabella 1: potenze consentite per classi di laser (SN EN 60825-1:2014)

Classe	Lunghezza d'onda [nm]	Tempi di esposizione connessi [sec]	Potenza consentita [mW]
1	400-450	>10	0.039
	450-500	>10	0.039-0.39 ¹
	500-700	>10	0.39
2	400-700	< 0.25	analogo a classe 1
	400-700	> 0.25	1
3R	400-700	> 0.25	5
3B	400-700	> 0.25	≤500
4	400-700	> 0.25	>500

2.2.3 Identificazione RF

L'identificazione a radiofrequenza (in inglese radio-frequency identification, RFID) utilizza i campi elettromagnetici per identificare e localizzare automaticamente i tag (etichette elettroniche) fissati o incorporati agli oggetti (tagger o corpetto). Questi tag contengono informazioni elettroniche. I tag passivi sono alimentati da un lettore RFID, posizionato nelle vicinanze, con energia sufficiente da consentirne la lettura. Tuttavia, ciò funziona solo a distanze relativamente brevi. I tag attivi, invece, hanno una fonte di energia locale, come per esempio una batteria, che ne permette la lettura a una distanza di diverse centinaia di metri dal lettore RFID. In questi sistemi, gli RFID dei corpetti emettono di continuo un numero di identificazione sottoforma di segnale digitale che è scansionato dai tagger.

.

¹ Tra 450 nm e 500 nm il valore aumenta esponenzialmente da 0,039 mW a 0,39 mW

2.3 Misurazioni relative al laser tag

L'UFSP, in collaborazione con l'Istituto federale di metrologia METAS, ha eseguito misurazioni della potenza e dello spettro degli strumenti di gioco utilizzati in un campo da gioco di laser tag (figura 2). Con uno spettrometro è stata misurata la distribuzione spettrale relativa della radiazione ottica e con un misuratore di potenza ne è stata registrata l'intensità.

Figura 2: ricevitore con apertura di 7 mm per simulare la dimensione della pupilla dell'occhio (cerchio rosso, sinistra); strumento ottico di puntamento e ricevitore (destra, foto UFSP)

La figura 3 mostra la distribuzione spettrale relativa del segnale emesso dallo strumento ottico di puntamento (tagger) testato. La linea rossa mostra la distribuzione media relativa calcolata in base a tutte le misurazioni e le linee blu mostrano le singole misurazioni. Il picco a 635 nm è generato dal raggio rosso usato per determinare la linea di mira (tagger). Le lunghezze d'onda dei segnali a infrarossi emessi rientravano nell'intervallo compreso tra 900 e 1000 nm. Grazie a questo ampio picco di spettro si è potuto stabilire che, in questo caso, la fonte di luce utilizzata non era un laser a infrarossi ma un diodo a emissione luminosa concentrata d'infrarossi (LED).

La massima potenza ottica misurata del tagger (raggio laser rosso a una lunghezza d'onda di 635 nm) è stata di 0,67 mW, mentre la durata dell'impulso variava tra 30 ms e 35 ms [7].



Figura 3: distribuzione spettrale relativa dello strumento ottico di puntamento (numero relativo degli impulsi misurati per secondo in funzione della lunghezza d'onda in nanometri). A 635 nm è visibile il raggio laser rosso usato per determinare la linea di mira e nell'intervallo da circa 900 nm a 1000 nm è visibile la sorgente di luce infrarossa.

2.4 Effetti del laser tag sulla salute

Per garantire la sicurezza nei campi da gioco per laser tag, gli organizzatori di manifestazioni di laser tag devono rispettare le prescrizioni del fabbricante del prodotto riguardanti l'installazione, l'utilizzo e la manutenzione di un campo da gioco per laser tag e tenere in considerazione le istruzioni del fabbricante e le informazioni sul prodotto [16].

2.4.1 Un pericolo per gli occhi?

I raggi laser sono onde elettromagnetiche molto concentrate caratterizzate da una determinata lunghezza d'onda negli spettri ultravioletto, visibile o infrarosso. I raggi laser fortemente collimati (a fasci concentrati paralleli) possono causare danni agli occhi anche da una distanza relativamente grande, poiché l'ampiezza della radiazione varia solo di poco, il che rende possibile un'efficiente trasmissione della potenza. Inoltre, la radiazione laser di moderata intensità è focalizzata attraverso il cristallino generando un piccolo punto focale sulla retina (figura 3). Ne consegue che anche laser con potenze di pochi milliwatt possono causare un danno serio e permanente. Attraverso effetti fotochimici nonché termici e a dipendenza della lunghezza d'onda e della durata dell'impulso, possono insorgere danni che influenzano l'acuità visiva in modo temporaneo o permanente. La profondità di penetrazione nell'occhio della radiazione elettromagnetica varia a seconda della lunghezza d'onda e causa congiuntiviti, infiammazioni della cornea, ulcere corneali, cataratta, lesioni della retina, ustioni della retina e cecità. Sostanzialmente, può penetrare fino alla retina una radiazione compresa tra 400 nm e 1400 nm. Se il raggio laser così focalizzato colpisce il punto cieco o la macula, punto di massima acuità visiva, la persona in questione rischia una cecità permanente. Non sempre ci si accorge immediatamente dei danni agli occhi causati dalla radiazione laser. È possibile che, per esempio, a seguito di un'ustione in una regione periferica della retica si formi un punto cieco di cui ci si accorge solo dopo anni.

Figura 4: rappresentazione di una normale fonte di luce e di un raggio laser: la radiazione molto divergente (tendente ad ampliarsi) di una lampadina traccia sulla retina un'immagine relativamente grande (figura a sinistra). Nel caso del laser, i raggi sono concentrati in modo parallelo (collimati). Il raggio laser è focalizzato sulla retina in modo quasi puntiforme (10-20 µm di diametro) tracciando un punto focale (figura a destra). (Fonte delle figure: METAS)

La radiazione infrarossa è una radiazione elettromagnetica invisibile all'occhio umano con una lunghezza d'onda compresa tra 780 nm e 1 mm. Le radiazioni infrarosse IR-B e IR-C (lunghezza d'onda maggiore di 1400 nm) possono causare danni qualora vengano assorbite nella parte anteriore dell'occhio, in particolare a livello del cristallino [3]. La radiazione infrarossa IR-A (da 780 a 1400 nm) può penetrare fino alla retina, dove viene assorbita [3] (figura 4). Questa radiazione infrarossa può essere molto più pericolosa della radiazione visibile (da 380 a 780 nm), perché la radiazione nell'infrarosso vicino viene focalizzata sulla retina nello stesso modo della radiazione visibile, ma il riflesso palpebrale dell'occhio, che normalmente provoca la chiusura della palpebra in caso di abbagliamento troppo forte, non funziona. Non si può prevedere se, per esempio in presenza di una debole luce diffusa, un raggio pericoloso si propaghi in una direzione inaspettata. Questa natura imprevedibile della radiazione infrarossa concentrata fa sì che sia impossibile segnalarne la pericolosità.

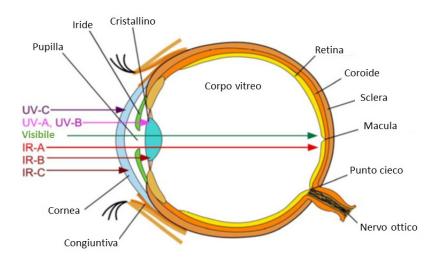


Figura 5: sezione dell'occhio umano e rappresentazione schematica della profondità di penetrazione della radiazione elettromagnetica a diversi intervalli di lunghezza d'onda. Nell'intervallo del visibile (380-780 nm, freccia verde) la retina è esposta a un serio pericolo a causa dell'effetto fotochimico e termico. La radiazione infrarossa A (IR-A, 780-1400 nm, freccia rossa) è particolarmente pericolosa perché la radiazione penetra fino alla retina senza essere percepita. (figura di SF 2018 [3])

La radiazione laser è suddivisa in varie classi di pericolo. Nella tabella 1 al punto 2.2.2 sono specificate le potenze consentite per le classi di laser. I laser della classe 1 non sono pericolosi per la salute neanche se si fissa volontariamente il raggio. I laser della classe 2 emettono solo nello spettro visibile (da 400 a 700 nm) e ad onda continua erogano una potenza massima di 1 mW. La radiazione laser corrispondente alla classe di laser 2 non è pericolosa per l'occhio se la durata dell'irradiazione è pari a 0,25 s, cioè al tempo necessario affinché il riflesso palpebrale si attivi in modo naturale. Tuttavia, se il riflesso palpebrale è soppresso o se esso non funziona, non si può escludere che anche un laser della classe 2 possa provocare un danno alla retina [6]. In uno studio condotto in laboratorio su 503 volontari, il riflesso palpebrale ha funzionato solo nel 15,5 per cento dei casi e in uno studio sul campo con 690 volontari nel 18,26 per cento dei casi [6]. Pertanto, il raggio laser non dovrebbe mai essere puntato intenzionalmente verso gli occhi dei compagni di gioco. Per quanto riguarda i laser delle classi 3R, 3B e 4 i danni all'occhio sono probabili, se non addirittura certi.

Quanto un raggio laser possa essere pericoloso per gli occhi dipende da numerosi fattori, come per esempio la lunghezza d'onda del laser, la potenza, la durata dell'esposizione, la lunghezza dell'impulso, il numero di impulsi e la distanza dal laser. Poiché, tuttavia, i laser utilizzati per determinare la linea di mira nei campi da gioco per laser tag sono laser che emettono impulsi di durata inferiore a 0,25 s (vedi i risultati delle misurazioni al punto 2.3) – e non laser ad emissione continua – si può escludere ogni eventuale pericolo per gli occhi.

2.5 Valutazione dei rischi per la salute

In base alle misurazioni eseguite, il gioco del laser tag non rappresenta un pericolo per gli occhi. Pertanto, nella maggior parte dei campi da gioco per laser tag non è necessario indossare occhiali di protezione. Tuttavia, i giocatori dovrebbero osservare tutte le istruzioni in materia di sicurezza fornite dall'organizzatore di manifestazioni di laser tag. Ai sensi dell'ordinanza sui giocattoli (OSG), che vieta i giocattoli con laser della classe 2, l'UFSP raccomanda di frequentare i campi da gioco per laser tag solo a partire dai 14 anni.

3 Disciplinamenti legali in Svizzera

La legge federale sulla sicurezza dei prodotti (LSPro) garantisce che i fabbricanti di prodotti immettano in commercio prodotti sicuri e innocui per la salute che non espongono a pericolo, o espongono soltanto a pericoli minimi, la sicurezza e la salute dei loro utenti e di terzi [16].

Legge federale sulla protezione dai pericoli delle radiazioni non ionizzanti e degli stimoli sonori (LRNIS) e l'ordinanza concernente la legge federale sulla protezione dai pericoli delle radiazioni non ionizzanti e degli stimoli sonori (O-LRNIS), che si propongono di proteggere il pubblico delle manifestazioni dagli effetti nocivi degli stimoli sonori e dei raggi laser, stabiliscono le condizioni da rispettare per organizzare spettacoli con luce laser [12,15]. Chi organizza manifestazioni che prevedono l'impiego di radiazione laser deve installare e utilizzare questi impianti in modo che siano rispettati i requisiti della norma SN EN 60825-1:2014, che stabilisce e classifica i valori massimi ammissibili di irradiazione per i raggi laser agenti direttamente sulla retina oculare, garantendo che non vi siano immissioni nocive per il pubblico [10].

Le manifestazioni di laser tag destinate esclusivamente agli adulti devono adempiere i requisiti dell'O-LRNIS e sono considerate manifestazioni che prevedono l'impiego di radiazione laser (sezione 3 O-LRNIS).

Le manifestazioni di laser tag, se consentono la partecipazione di bambini, ai sensi dell'OSG possono svolgersi solo con apparecchi laser della classe 1. Secondo l'articolo 65 dell'ordinanza sulle derrate alimentari e gli oggetti d'uso (ODerr) [14] per giocattoli si intendono tutti gli oggetti che sono destinati o concepiti per essere utilizzati per giocare dai bambini fino a 14 anni di età. [34]. L'articolo 66 capoverso 1 ODerr dispone che, in caso di impiego conforme alla destinazione o prevedibile e in considerazione del comportamento abituale dei bambini, i giocattoli non devono compromettere la sicurezza o la salute degli utilizzatori o di terzi. L'OSG, inoltre, fissa requisiti specifici riguardanti i laser nei giocattoli per bambini fino a 14 anni d'età [13]. Secondo l'allegato 2, sezione 4, numero 8 OSG, i giocattoli elettrici devono essere progettati e costruiti in modo da non comportare pericoli per la salute o rischi di lesioni agli occhi o alla cute derivanti da laser, diodi emettitori di luce (LED) o da qualsiasi altro tipo di radiazione. I giocattoli elettrici devono essere progettati e costruiti in modo tale che i campi elettrici, magnetici ed elettromagnetici e le altre radiazioni generate dall'apparecchio siano limitate a quanto necessario per il funzionamento del giocattolo. Durante il funzionamento del giocattolo deve essere rispettato un livello di sicurezza conforme allo stato dell'arte generalmente riconosciuto e alle prescrizioni applicabili. Questo vale anche per i giocattoli con laser. Per tenere conto di tutto ciò, nella norma tecnica SN EN 62115:2005 «Sicurezza dei giocattoli elettrici» viene specificato che nei giocattoli possono essere presenti esclusivamente laser della classe 1, che corrisponde alla classe di laser più bassa [11]. I laser della classe 2 non sono ammessi nei giocattoli.

L'età minima per frequentare i campi da gioco per laser tag non è disciplinata in modo uniforme. Alcuni organizzatori di manifestazioni di laser tag offrono orari e programmi di gioco dedicati ai bambini o anche alle famiglie. A causa delle dimensioni dei corpetti molti organizzatori di manifestazioni di laser tag raccomandano un'età minima di circa sette anni, una larghezza minima delle spalle di circa 25 cm o un'altezza minima di circa 130 cm. Comunque, in vendita si trovano anche corpetti specifici per bambini di età superiore ai quattro anni. Altri organizzatori raccomandano un'età minima di 18 anni e altri ancora, inoltre, richiedono che i bambini siano accompagnati da un adulto. L'UFSP raccomanda di frequentare i campi da gioco per laser tag solo a partire dai 14 anni.

4 Bibliografia / ulteriori informazioni

- [1] Bouma, E (2016). What are possible techniques a hardware designer can use in real life gaming instead of infrared technology? (in inglese)
- [2] deinlasertag.de (2018). Impianti per laser tag presenti in Svizzera (in tedesco): https://deinlasertag.de/spielsysteme/schweiz/
- [3] Fachverband für Strahlenschutz (FS 2018). Leitfaden «Inkohärente sichtbare und infrarote Strahlung von künstlichen Quellen» (in tedesco): https://www.fs-ev.org/fileadmin/user-up-load/04 Arbeitsgruppen/08 Nichtionisierende Strahlung/02 Dokumente/Leitfaden-SB-IR-AKNIR 2018.pdf
- [4] Laser Arena AG (2015). Trasmissione del segnale (in tedesco e in inglese): https://laser-arena.ch/laserspiel/
- [5] Lasergame Zürich GmbH (2017). Lasergamezone Tipi di armi (in tedesco): https://www.lasergamezone.ch/index.html#!/gamecenter/lasertag/weapons
- [6] Reidenbach, H.-D., J. Hofmann, K. Dollinger, M. Seckler (2004). A Critical Consideration of the Blink Reflex as a Means for Laser Safety Regulations (in inglese): http://irpa11.irpa.net/pdfs/8c5.pdf
- [7] Rinderer, F (2018). Messbericht Beurteilung photobiologische Sicherheit. Eidgenössisches Institut für Metrologie METAS. Wabern (in tedesco)
- [8] Rosenblum, B (2008). United States Patent US 8,721,460. Toy Laser Gun and Laser Target System (in inglese)
- [9] Small, D.B., B.D. Farley, W.R. Park (2006). United States Patent US 7,846,028. Lazer Tag Advanced (in inglese)
- [10] SN EN 60825-1:2014 Sicurezza degli apparecchi laser Parte 1: Classificazione delle apparecchiature e prescrizioni
- [11] SN EN 62115:2005 Sicurezza dei giocattoli elettrici
- [12] Ordinanza del 27 febbraio 2019 concernente la legge federale sulla protezione dai pericoli delle radiazioni non ionizzanti e degli stimoli sonori (O-LRNIS; RS 814.711): https://www.fedlex.ad-min.ch/eli/cc/2019/183/it
- [13] Ordinanza del 14 settembre 2015 del Dipartimento federale dell'interno DFI concernente la sicurezza dei giocattoli (ordinanza sui giocattoli, OSG; RS 817.023.11): https://www.ad-min.ch/opc/it/official-compilation/2015/3459.pdf
- [14] Ordinanza del 16 dicembre 2016 sulle derrate alimentari e gli oggetti d'uso (ODerr; RS 817.02, stato 1° maggio 2018): https://www.fedlex.admin.ch/eli/cc/2017/63/it
- [15] Legge federale del 16 giugno 2017 sulla protezione dai pericoli delle radiazioni non ionizzanti e degli stimoli sonori (LRNIS; RS 818.33): https://www.fedlex.admin.ch/eli/cc/2019/182/it
- [16] Legge federale del 12 giugno 2009 sulla sicurezza dei prodotti (LSPro; RS 930.11, stato 1° luglio 2010): https://www.admin.ch/opc/it/classified-compilation/20081129/201007010000/930.11.pdf