

Bundesamt für Gesundheit BAG Direktionsbereich Gesundheitsschutz

September 2025

Jahresbericht 2024

Dosimetrie der beruflich strahlenexponierten Personen in der Schweiz

Bericht der Aufsichtsbehörden

Bundesamt für Gesundheit (BAG) Eidgenössisches Nuklearsicherheitsinspektorat (ENSI) Schweizerische Unfallversicherungsanstalt (Suva)

Inhalt

1	Einleitung	3
2	Personendosimetriestellen	3
3	Vergleichsmessungen	6
4	Externe Strahlenexposition	7
5	Interne Strahlenexposition	12
6	Exposition durch kosmische Strahlung	14
7	Effektive Dosen durch gesamte Strahlenexposition	14
8	Überschreitungen von Dosisgrenzwerten und spezielle Vorkommnisse	16
9	Trend der letzten 49 Jahre	19
10	Schlussfolgerungen	23
11	Weitere Publikationen	24
12	Referenzen	25

1 Einleitung

Der vorliegende Jahresbericht fasst die Ergebnisse der Personendosimetrie der Schweiz für externe und interne Bestrahlung im Jahr 2024 zusammen und zeigt den Trend der letzten 49 Jahre auf.

Die aktuellen Dosisdaten stammen aus dem Schweizerischen Zentralen Dosisregister (ZDR), das seit 1990 beim Bundesamt für Gesundheit (BAG) geführt wird. Die Statistiken vor 1990 wurden anhand von Meldungen der einzelnen Dosimetriestellen erstellt. Die Daten im ZDR stammen derzeit von 11 anerkannten Dosimetriestellen für externe Bestrahlung und 8 Stellen für interne Bestrahlung.

Auf den Webseiten des BAG (Strahlenschutz, <u>www.str-rad.ch</u>) sind der vorliegende Bericht sowie weitere Informationen aus dem Bereich Dosimetrie und berufliche Strahlenexposition verfügbar und werden laufend aktualisiert.

2 Personendosimetriestellen

Das Ziel der Personendosimetrie ist es, die Strahlenexposition von Personen zu ermitteln, die bei ihrer beruflichen Tätigkeit oder Ausbildung ionisierender Strahlung ausgesetzt sind. Damit soll die Einhaltung der vorgeschriebenen Dosisgrenzwerte gewährleistet und die Expositionssituation in den verschiedenen Tätigkeitsbereichen ermittelt werden. Anerkannte Schweizer Dosimetriestellen stellen dazu passive Dosimeter zur Überwachung der Exposition des gesamten Körpers, der Extremitäten und der Augenlinsen bereit. Sie können auch die interne Exposition im Falle einer Inkorporation oder Inhalation einer radioaktiven Substanz überwachen.

2.1 Personendosimetriestellen für externe Bestrahlung

Die Messung der Personendosen wurde im Jahr 2024 von den folgenden anerkannten Stellen durchgeführt:

CERN Organisation européenne pour la recherche nucléaire, Genève

Dosilab Dosilab AG, Köniz

IRA Institut de radiophysique, Lausanne
KKB Kernkraftwerk Beznau, Döttingen
KKG Kernkraftwerk Gösgen, Däniken
KKL Kernkraftwerk Leibstadt, Leibstadt
KKM Kernkraftwerk Mühleberg, Mühleberg

PEDOS PEDOS AG, Muri b. Bern
PSI Paul-Scherrer-Institut, Villigen

Suva Schweizerische Unfallversicherungsanstalt, Luzern

Die Messmethoden, sowie die Anzahl der von den verschiedenen Stellen dosimetrierten beruflich strahlenexponierten Personen, sind in Tabelle 1 angegeben.

Tabelle 1: Messmethoden und Messumfang der Personendosimetriestellen für äussere Bestrahlung 2024.

Mess-	Ganzkörper	· <i>H</i> _p (10) und <i>H</i>	/ _p (0.07)	Extremitäter	n H _p (0.07)		Augenlinse H _p (3) oder H _p (0.07)			
stelle	Strahlung	Methode	Anzahl Personen	Strahlung	Methode	Anzahl Personen	Strahlung	Methode	Anzahl Personen	
CERN	β ,γ, Χ	DIS ¹	9456	β, γ, Χ	TLD	107				
	n	PADC ²	3108							
Dosilab	β, γ, Χ	TLD ³	45978	β, γ, Χ	TLD	1247	β, γ, Χ	TLD	92	
IRA	β, γ, Χ	TLD, OSL ⁴	11047	β, γ, Χ	OSL	380	β, γ, Χ	TLD	11	
KKB	β, γ, Χ	DIS	1549 ⁵			28				
KKG	β, γ, Χ	DIS	1339			16				
KKL	β, γ, Χ	DIS	19 681			158				
KKM	β, γ, Χ	TLD	657			3				
PEDOS	β, γ, Χ	TLD	16268	β, γ, Χ	TLD	466				
PSI	β, γ, Χ	RPL ⁶ , DIS	2538	β, γ, Χ	TLD	141				
	n	PADC	1932 ⁷							
Suva	β, γ, Χ	TLD	12801	β, γ, Χ	TLD	355				

_

¹ DIS Direct Ion Storage Dosimetrie

² PADC Neutronendosimetrie mit PADC Dosimeter

TLD Thermolumineszenz-Dosimetrie
 OSL Optisch Stimulierte Lumineszenz

⁵ Diese Zahl umfasst auch die mit Ganzkörperdosimetern ausgestatteten Personen im ZWILAG.

⁶ RPL Radio-Photolumineszenz-Dosimetrie

⁷ Diese Zahl umfasst auch die mit Neutronendosimetern ausgestatteten Personen in den Kernkraftwerken und im ZWILAG.

Tabelle 2: Messmethoden, Nuklide und Messumfang der Inkorporationsmessstellen 2024.

Messstelle	Methode	Strahlung	Detektor	Nuklide	Personen
HUG	Ganzkörperzähler	γ	Nal ⁸ Ge ⁹	Cr-51, Fe-59, Co-57, Co-58, Co-60, Zn-65, Ga-67, Sr-85, Tc-99m, In-111, Cs-134, Cs- 137, Sm-153, Lu-177, Re-186, Re-188, Tl-201	1
IRA	Schilddrüse	γ	Nal	I-123, I-125, I-131	1
	Urin	β	Scint ¹⁰	H-3, C-14, P-32, P-33, S-35, Ca-45	17
		β	PC ¹¹	Sr-90	
	Urin, Stuhl	α	Si ¹²	Po-210, Ra-226, U-234, U-235, U-238, Pu-239, Am-241	3
LS	Ganzkörperzähler	γ	Ge	Cr-51, Co-57, Co-58, Fe-59, Co-60, Zn-65, Ga-67, Sr-85, Tc-99m, In-111, Ba-133, Cs- 134, Cs-137, Eu-152, Sm-153, Eu-154, Lu-177, Re-186, Re- 188, Tl-201	
mb-microtec	Urin	β	Scint	H-3	56
PSI	Ganzkörperzähler	γ	Ge	Cr-51, Fe-59, Co-57, Co-58, Co-60, Zn-65, Ga-67, Sr-85, Tc-99m, In-111, Cs-134, Cs- 137, Sm-153, Lu-177, Re-186, Re-188, Tl-201	1
	Schilddrüse	γ	Nal	I-123, I-124, I-125, I-131	
	Urin	β	Scint	H-3, C-14, P-32, P-33, S-35, Ca-45, Ni-63, Sr-89, Sr-90, Y- 90, Er-169	
	Urin, Stuhl	α	Si	Po-210, Ra-226, Th-228, Th- 232, U-234, U-235, U-238, Np- 237, Pu-238, Pu-239, Pu-240, Am-241, Cm-242, Cm-244	
RC TRITEC	Urin	β	Scint	H-3, C-14	16
Suva	Urin	β	Scint	H-3, C-14, P-32, P-33, S-35, Ca-45	99

⁸ Nal

Nal-Szintillator

⁹ Ge ¹⁰ Scint

Germanium-Detektor

11 PC

Flüssigszintillator Proportionalzähler

¹² Si

Silizium-Detektor

2.2 Inkorporationsmessstellen

Die effektiven Folgedosen inkorporierter Radionuklide wurden im Jahr 2024 von den folgenden anerkannten Inkorporationsmessstellen ermittelt:

IRA Institut de radiophysique, Lausanne

LS Labor Spiez, Spiez

mb-microtec mb-microtec ag, Niederwangen
PSI Paul-Scherrer-Institut, Villigen

RC Tritec RC Tritec AG, Teufen

Suva Schweizerische Unfallversicherungsanstalt, Luzern

Die Messmethoden, die gemessenen Nuklide, sowie die Anzahl der von den verschiedenen Stellen auf Inkorporation überwachten beruflich strahlenexponierten Personen, sind in Tabelle 2 angegeben.

2.3 Dosimetrie des Flugpersonals

Das Flugpersonal ist während der Arbeit in der Luft einer erhöhten Strahlenexposition durch kosmische Strahlung ausgesetzt und gilt daher als beruflich strahlenexponiert. Die Dosisberechnung kann betriebsintern durch den Luftfahrzeugbetreiber selber oder durch einen Dienstleister durchgeführt werden. Das BAG führt eine Liste mit Software-Lösungen für die Dosisberechnung, welche dem Stand der Technik entsprechen:

- ACD Helios 1.0
- AVIDOS 2.0
- CARI-7 und CARI-7A (Federal Aviation Administration, USA)
- EPCARD Version 3.34
- EPCARD Version 5.4.3
- GlobaLog Version 2.0
- IASON FREE mit den Software-Komponenten FREEBackend Version 1.3.0 und FREEDu Version 1.3.1
- IASON FREE 2.0.0
- PANDOCA Version 1.1.1
- PCAire Version PCAire DLL v1.2.0.21 und Calculation DLL v1.1.0.1
- SIEVERT Version 2.4.5

3 Vergleichsmessungen

Nach Artikel 92 der StSV (814.501, 2017) müssen sich die Dosimetriestellen an Vergleichsmessungen beteiligen. Im Berichtsjahr wurde je eine Vergleichsmessung für die externe und die interne Dosimetrie durchgeführt.

3.1 Externe Dosimetrie

Zehn anerkannte Dosimetriestellen haben mit je zehn Dosimetern an der 2024 vom PSI durchgeführten Vergleichsmessung für die externe Dosimetrie teilgenommen. Insgesamt 169 Ganzkörperdosimeter wurden unter verschiedenen Bedingungen bestrahlt (Cs-137, N-40, N-60 und N-120). Die Messwerte von zwei Dosimetriestellen erfüllten bei Bestrahlungen unter Referenzbedingungen die Anforderungen der Dosimetrieverordnung nicht (Artikel 21 der Dosimetrieverordnung: die Abweichung zwischen gemessener Dosis und Referenzdosis sollte maximal 10 % betragen). Bei den ermittelten Dosen bei Photonenbestrahlung (N-40, N-60 und N-120) waren die Ergebnisse insgesamt gut, jedoch befanden sich drei Teilnehmende im Warnbereich.

Bei den Extremitätendosimetern nahmen fünf Dosimetriestellen mit insgesamt 91 Dosimetern an der Vergleichsmessung 2024 teil. Die Resultate der Extremitätendosimeter waren sehr zufriedenstellend; keine Dosimetriestelle lag ausserhalb der Toleranz.

Die zuständigen Aufsichtsbehörden haben die Ergebnisse ausgewertet und mit den betroffenen Dosimetriestellen die Gründe für die beobachteten Abweichungen und entsprechende Massnahmen besprochen.

3.2 Interne Dosimetrie

In 2024 wurde das IRA mit der Durchführung einer Vergleichsmessung für die interne Dosimetrie zur Messung von Kohlenstoff-14 (C-14) und Phosphor-32 (P-32) im Urin beauftragt. Vier anerkannte Dosimetriestellen haben an der Vergleichsmessung teilgenommen.

Organisation und Datenanalyse erfüllten die Vorgaben internationaler Standards.

Jede Messstelle erhielt Proben, die einem Kontaminationsszenario einer fiktiven Person entsprachen. Die Vergleichsmessung bestand darin, die Aktivität dieser Proben nach dem in der Zulassung anerkannten Standardverfahren zu bestimmen und dann die effektive Folgedosis E_{50} nach vorgegebenen Szenarien und Aktivitäten abzuleiten.

Die gemessenen C-14- und P-32-Aktivitäten im Urin aller Teilnehmenden und aller Proben lagen innerhalb des Toleranzbereichs von ±20 % gemäss den Vorgaben der Dosimetrieverordnung. Es wurde jedoch festgestellt, dass eine genauere Bewertung der Messunsicherheit wünschenswert wäre.

Auch die effektive Folgedosis E_{50} wurde korrekt und gemäss Dosimetrieverordnung berechnet. Es wurde jedoch darauf hingewiesen, dass die Berechnungen der E_{50} -Dosen in komplexeren Szenarien verbessert werden können, z. B. im Fall einer früheren Inkorporation

Die teilnehmenden Inkorporationsmessstellen erfüllten somit die Anforderungen an die Messgenauigkeit bei der Bestimmung der C-14- und P-32-Aktivität im Urin.

4 Externe Strahlenexposition

In diesem Abschnitt werden die Messungen zur Bestimmung der akkumulierten Dosen durch externe Bestrahlung erläutert. Die Exposition durch kosmische Strahlung wird hier nicht berücksichtigt, sondern separat behandelt.

4.1 Ganzkörperdosen

Die Dosen durch externe Bestrahlung werden mit Personendosimetern gemessen, die von den beruflich strahlenexponierten Personen am Körperrumpf getragen werden.

Als Dosimeter werden TL- (Thermolumineszenz), DIS- (Direct Ion Storage), RPL- (Radio-Photoluminescence) und OSL- (optisch stimulierte Lumineszenz) Dosimeter eingesetzt. Grundsätzlich wird damit die Personen-Tiefendosis $H_p(10)$ bestimmt, wobei die Dosisbeiträge der natürlichen Untergrundstrahlung subtrahiert werden müssen. Die ermittelten Dosen werden dem Auftraggeber, dem Zentralen Dosisregister (ZDR) beim BAG, sowie in dessen Aufsichtsbereich dem ENSI gemeldet.

Wo es notwendig ist, werden zusätzlich spezielle Neutronendosimeter (poly-allyl diglycol carbonate, kurz PADC Dosimeter) verwendet. Im Jahr 2024 wurde keine Dosis über 0 mSv mit einem PADC-Dosimeter gemessen. Die Neutronendosen sind in den Daten für $H_p(10)$ jeweils enthalten. In Tabelle 3 sind die Personen-Tiefendosen durch externe Bestrahlung nach Tätigkeitsbereichen aufgeschlüsselt. Angegeben sind die Anzahl Personen pro Dosisintervall und die Kollektivdosen.

Tabelle 3: Personen-Tiefendosen durch äussere Bestrahlung 2024: Anzahl der Personen und Kollektivdosis¹³. Die Summe der Kollektivdosen der einzelnen Sektoren kann aufgrund von Rundungen von der Gesamtkollektivdosis abweichen.

Dosisintervall [mSv]	Spitäler	Arztpraxen	Radiologische Arztpraxen	Zahnärztl. Praxen	Universitäten, Forschung	Kernkraft- werke ZWILAG ¹⁴	Industrie, Handel	Öffentl. Dienste	Veterinär- medizin	Versch.	Total
= 0	36755	18890	825	15081	12111	3262	2788	456	4048	3091	97307
0.1-1.0	1908	238	37	296	769	1424	191	10	166	49	5088
1.1-2.0	161	9	8	6	8	378	39		3	7	619
2.1-3.0	42	2	4	1		204	19			1	273
3.1-4.0	18	2	3			102	12	1			138
4.1-5.0	5	1				76	3				85
5.1-6.0	4					53	4				61
6.1-7.0	1					19	1				21
7.1-8.0						16	3				19
8.1-9.0	2					11					13
9.1 -10.0						7					7
10.1-11.0						13					13
11.1-12.0						3	1				4
12.1-13.0						8					8
13.1-14.0											
14.1-15.0											
15.1-16.0											
16.1-17.0											
17.1-18.0											
18.1-19.0											
19.1-20.0											
20.1-50.0	1										1
>50.0											
Total	38897	19142	877	15384	12888	5576	3061	467	4217	3148	103657
Kollektivdosis [Personen-Sv]	0.9	0.07	0.04	0.05	0.18	3.3	0.29	0.0	0.02	0.03	4.89

¹³ Falls eine Person in mehreren Bereichen tätig war, wird sie dem Bereich mit dem höchsten Dosisbeitrag zugeteilt, bei gleichen Dosen nachfolgender Priorität: Kernkraftwerke, dann Spitäler, Arztpraxen, usw. gemäss der Reihenfolge in der Tabelle.

¹⁴ ZWILAG: Zwischenlager Würenlingen AG

Die Anzahl der infolge externer Bestrahlung beruflich strahlenexponierten Personen betrug im Berichtsjahr 103 657.

Die Kollektivdosis, d.h. die Summe der individuellen Personen-Tiefendosen aller beruflich strahlenexponierten Personen der Schweiz, lag im Jahr 2024 bei 4.89 Personen-Sv (gegenüber 3.78 Personen-Sv im Vorjahr). Die Kollektivdosis bewegt sich seit 2000 in einem stabilen Bereich zwischen 4 und 6 Personen-Sv. Die jährlich auftretenden Schwankungen sind hauptsächlich unterschiedlich intensiven periodischen Revisionsarbeiten und Nachrüstungen in den Kernkraftwerken zuzuordnen.

Die einzelnen Tätigkeitsbereiche trugen zur Kollektivdosis wie folgt bei: Kernkraftwerke (inkl. ZWILAG) 67%, Medizin (Veterinärmedizin eingeschlossen) 22%, Forschung 4%, Industrie, Handel, öffentliche Dienste und Verschiedenes 7%. In den Abbildung 1 sind die Anzahl der Personen und die Dosisverteilungen der verschiedenen Tätigkeitsbereiche dargestellt.

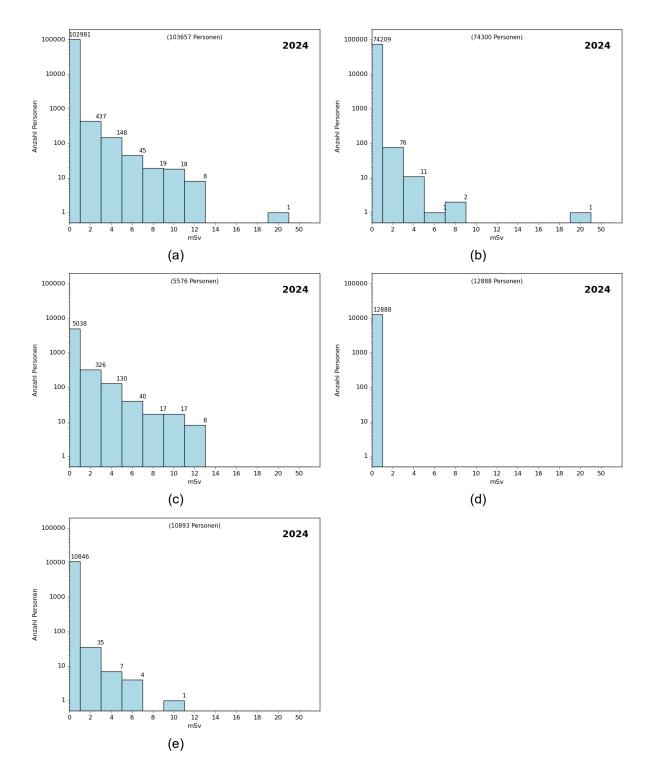


Abbildung 1: Personen-Tiefendosen durch externe Bestrahlung in (a) allen Tätigkeitsbereichen, (b) der Medizin, (c) Kernkraftwerken und ZWILAG, (d) Universitäten und Forschung, (e) Industrie und Verschiedenes (Handel, öffentliche Dienste).

Entsprechend der Empfehlung der Eidgenössischen Kommission für Strahlenschutz (KSR) ist die Jahresdosis einer Person die Summe der auf 0.1 mSv gerundeten Monats- oder Quartalsdosen, wobei Dosen kleiner als 0.075 mSv als Nulldosen verbucht werden. Die höchsten jährlichen Personendosen (> 10 mSv) wurden in den Kernkraftwerken, in der Industrie/Handel und in den Spitälern gemessen (Tabelle 3). Gegenüber dem Vorjahr erreichten deutlich mehr Personen aus dem Bereich der Kernkraftwerke eine Dosis über 10 mSv, worauf in Kapitel 8 genauer eingegangen wird. Eine Person im Bereich Spitäler überschritt den Jahresgrenzwert für die Ganzkörperdosis (siehe Kapitel 8).

4.2 Teilkörperdosen

Die Personen-Oberflächendosen (Hautdosen) werden üblicherweise mit den gleichen Personendosimetern gemessen, mit denen auch $H_p(10)$ ermittelt wird. Die Messresultate werden in der Dosisgrösse $H_p(0.07)$ angegeben. Bei üblichen Expositionen und Photonenenergien sind diese zwei Werte praktisch gleich. Bei sehr tiefen Photonenenergien und β-Strahlen ist $H_p(0.07)$ grösser als $H_p(10)$.

Für die Messung der Strahlenexposition der Extremitäten werden TLD- oder OSL-Dosimeter in Form von Fingerringen verwendet. Damit werden die Extremitätendosen (Handdosen) mit der Dosisgrösse $H_p(0.07)$ ermittelt. In Tabelle 4 sind die Handdosen nach Tätigkeitsbereich und Dosisintervall aufgeführt.

Tabelle 4: Handdosen 2024: Anzahl der Personen.

Dosisintervall [mSv]	Medizin	Universitäten, Forschung	Kernkraftwerke & ZWILAG	Industrie	Veterinär- medizin	Versch.	Total
= 0	1027	243	84	101	10	87	1552
0.1 - 25.0	835	62	117	48	17	21	1100
25.1 - 50.0	84	9	4				97
50.1 - 75.0	40	1				1	42
75.1 - 100.0	30						30
100.1 - 125.0	28						28
125.1 - 150.0	20						20
150.1 - 175.0	5						5
175.1 - 200.0	8						8
200.1 - 225.0	4						4
225.1 - 250.0	2						2
250.1 - 275.0	6						6
275.1 - 300.0	1						1
300.1 - 325.0	3						3
325.1 - 350.0	2						2
350.1 - 375.0							
375.1 - 400.0							
400.1 - 425.0	1						1
425.1 - 450.0							
450.1 - 475.0							
475.1 - 500.0							
> 500.0							
Total	2096	315	205	149	27	109	2901

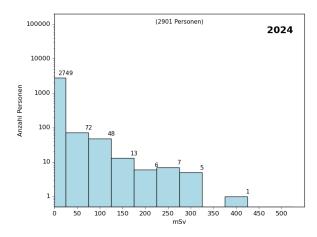


Abbildung 2: Handdosen in allen Tätigkeitsbereichen.

Abbildung 2 zeigt die Verteilung der Handdosen. Die höheren Dosen stammen hauptsächlich aus den Abteilungen für Nuklearmedizin.

4.3 Augenlinsendosen

Die Augenlinsendosis wird der mit dem Ganzkörperdosimeter gemessenen Oberflächen-Personendosis $H_p(0.07)$ gleichgesetzt oder kann alternativ mit einem Augenlinsendosimeter und der operationellen Grösse $H_p(3)$ bestimmt werden ((814.501.43, 2017) : Art. 11). Eine Person aus dem Bereich Spitäler hat im Berichtsjahr den Jahresgrenzwert von 20 mSv überschritten (Kapitel 8).

5 Interne Strahlenexposition

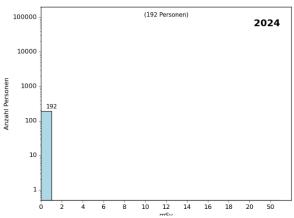


Abbildung 3: Effektive Folgedosen durch interne Bestrahlung.

Die Inkorporationsüberwachung erfolgt entweder zuerst mittels Triagemessungen durch den Betrieb oder direkt durch eine Inkorporationsmessung bei einer anerkannten Personendosimetriestelle. Wird bei der Triagemessung die nuklidspezifische Messschwelle überschritten, muss Inkorporationsmessung durchgeführt werden. Die Dosis Berechnung einer als Folge Inkorporationen radioaktiver Stoffe erfolgt über die Bestimmung der Aktivität in Organen oder durch Ausscheidungsanalyse. Aufgrund dieser Messungen wird die effektive Folgedosis E₅₀ ermittelt.

Tabelle 5: Effektive Folgedosen durch innere Bestrahlung 2024: Anzahl der Personen, Kollektivdosen und inkorporierte Nuklide

Dosisintervall [mSv]	Medizin	Universitäten, Forschung	Kernkraftwerke & ZWILAG	Uhrenindustrie	Übrige Industrie	Veterinär- medizin	Versch.	Total
= 0		16		24	111		3	154
0.1– 1.0				30	6			36
1.1 – 2.0				2				2
2.1 – 3.0								
3.1 – 4.0								
4.1 – 5.0								
5.1 – 6.0								
6.1 – 7.0								
7.1 – 8.0								
8.1 – 9.0								
9.1 -10.0								
10.1-11.0								
11.1-12.0								
12.1-13.0								
13.1-14.0								
14.1-15.0								
15.1-16.0								
16.1-17.0								
17.1-18.0								
18.1-19.0								
19.1-20.0								
20.1-50.0								
> 50.0								
Total		16		56	117		3	192
Kollektivdosis [Personen-Sv]	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.01
Nuklide mit E ₅₀ > 1 mSv				³H				

Im Jahr 2024 wurden bei 192 Personen Inkorporationsmessungen durchgeführt und die effektive Folgedosis E_{50} ermittelt. In Tabelle 5 sind die Ergebnisse nach Tätigkeitsbereichen aufgeführt. Die höchste effektive Folgedosis betrug 1.3 mSv.

In Abbildung 3 ist die Verteilung der internen Dosen dargestellt. Die Kollektivdosis betrug wie bereits im Vorjahr 0.01 Personen-Sv. Sie ist hauptsächlich durch Tritium-Inkorporationen in der Uhrenindustrie zustande gekommen.

6 Exposition durch kosmische Strahlung

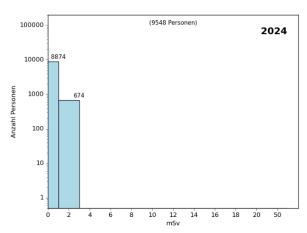


Abbildung 4: Effektive Dosen durch kosmische Strahlung in der Luftfahrt.

Im Berichtsjahr wurden bei 9548 Personen die Flugdosen rechnerisch ermittelt. Abbildung 4 zeigt die Verteilung dieser Dosen. Der höchste Jahreswert für die effektive Dosis, der bei einem Mitglied des Kabinenpersonals berechnet wurde, betrug 3.31 mSv. Somit sind bisher alle Personen in diesem Bereich der Kategorie B zuzuordnen (Personen, die bei ihrer beruflichen Tätigkeit pro Kalenderjahr bis 6 mSv effektive Dosis akkumulieren können). Wie erwartet hatte das Flugpersonal mit 1.21 mSv (1.01 mSv in 2023) die höchste mittlere Jahresdosis aller beruflich strahlenexponierten Personen. Die Kollektivdosis betrug 10.71 Personen-Sv.

7 Effektive Dosen durch gesamte Strahlenexposition

Die effektive Dosis wird der Summe aus der Personen-Tiefendosis $H_p(10)$ durch externe Bestrahlung und der effektiven Folgedosis E_{50} durch interne Bestrahlung gleichgesetzt. Beim Flugpersonal wird die effektive Dosis rechnerisch ermittelt.

Tabelle 6: Effektive Dosen durch alle Bestrahlungsarten 2024: Anzahl der Personen und Kollektivdosen 15.

Dosisintervall [mSv]	Spitäler	Arztpraxen	Radiologische Arztpraxen	Zahnärztliche Praxen	Universitäten, Forschung	Kernkraftwerke und ZWILAG	Industrie, Handel	Öffentliche Dienste	Veterinär- medizin	Verschie- denes	Luftfahrt	Total
= 0	36720	18882	825	15080	12114	3262	2911	455	4046	3089	218	97602
0.1-1.0	1906	237	37	296	769	1424	227	10	166	49	3799	8920
1.1-2.0	161	9	8	6	8	378	41		3	7	4897	5518
2.1-3.0	42	2	4	1		204	19			1	632	905
3.1-4.0	18	2	3			102	12	1			1	139
4.1-5.0	5	1				76	3					85
5.1-6.0	4					53	4					61
6.1-7.0	1					19	1					21
7.1-8.0						16	3					19
8.1-9.0	2					11						13
9.1-10.0						7						7
10.1-11.0						13						13
11.1-12.0						3	1					4
12.1-13.0						8						8
13.1-14.0												
14.1-15.0												
15.1-16.0												
16.1-17.0												
17.1-18.0												
18.1-19.0												
19.1-20.0												
20.1-50.0	1											1
> 50.0												
Total	38860	19133	877	15383	12891	5576	3222	466	4215	3146	9547	113316
Kollektivdosis [Personen-Sv]	0.9	0.07	0.04	0.05	0.18	3.3	0.3	0.0	0.02	0.03	10.71	15.61

¹⁵ Bemerkung: Falls eine Person in mehreren Bereichen tätig war, wird sie dem Bereich mit dem höchsten Dosisbeitrag zugeteilt, bei gleichen Dosen nachfolgender Priorität: Kernkraftwerke, dann Spitäler, Arztpraxen, usw. gemäss der Reihenfolge in der Tabelle Dies erklärt den Unterschied der Anzahl Personen zwischen Tabelle 3 und Tabelle 6.

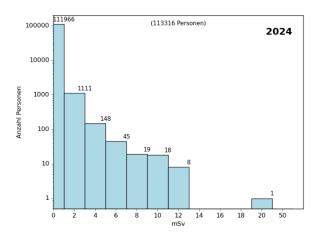


Abbildung 5: Effektive Dosen durch externe und interne Bestrahlung in allen Tätigkeitsbereichen.

Die Verteilung der effektiven Dosen ist in Tabelle 6 und in Abbildung 5 dargestellt. Die Gesamtzahl aller beruflich strahlenexponierten Personen betrug im Berichtsjahr 113 316 (Vorjahr: 107 319). Darin nicht enthalten sind Personen, bei denen ausschliesslich Triagemessungen durchgeführt wurden. Die gesamte Kollektivdosis betrug 15.61 Personen-Sv, respektive 4.89 Personen-Sv ohne das Flugpersonal (Vorjahr: 3.78 Personen-Sv). Die Verteilung auf die verschiedenen Bereiche ist in Abbildung 6 ersichtlich (Abbildung 7 umfasst auch die Luftfahrt).

Die Inkorporationen trugen weniger als 0.1% zur Gesamtkollektivdosis bei. Die entsprechenden Dosen stammten überwiegend aus der Industrie, wo die Inkorporationen rund 3 % der Kollektivdosis ausmachten.

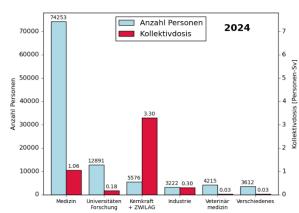


Abbildung 6: Anzahl Personen und Kollektivdosen durch alle Bestrahlungsarten.

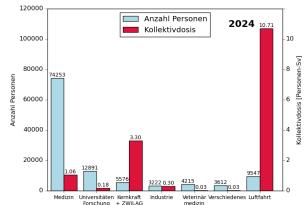


Abbildung 7: Die Abbildung schließt auch die kosmische Strahlung in der Luftfahrt ein.

8 Überschreitungen von Dosisgrenzwerten und spezielle Vorkommnisse

Im Berichtsjahr wurde bei einem in der interventionellen Radiologie tätigen Radiologiefachmann eine monatliche Augenlinsendosis von 28 mSv gemessen. Trotz einer Untersuchung im betroffenen Spital konnte keine Ursache für die, mit einem Augenlinsendosimeter gemessene, Dosis gefunden werden. Bei den Tätigkeiten der Person ist keine Dosis in dieser Grössenordnung zu erwarten, da die Radiologiefachperson bei den Eingriffen nicht am nächsten zum Patienten steht. Der gemessene Wert wurde dennoch im zentralen Dosisregister verbucht, da eine echte Personendosis nicht vollständig ausgeschlossen werden kann.

Eine zweite Überschreitung des Jahresgrenzwertes wurde bei einem Radiologiefachmann in der diagnostischen Radiologie festgestellt. Die Person akkumulierte eine effektive Dosis und eine Augenlinsendosis von jeweils knapp über 20 mSv (20.1 mSv und 20.3 mSv), da in einem Monat eine effektive Dosis von 19.7 mSv, resp. eine Augenlinsendosis von 19.9 mSv gemessen wurde. Die Person arbeitete hauptsächlich in der CT-Diagnostik. Auch in diesem Fall brachte die interne Untersuchung keine klare Dosisursache zutage, da die Person ausgesagt hat, sich während den Untersuchungen nie im CT-Raum aufgehalten zu haben. Die Vermutung, dass das Dosimeter im Raum verloren ging, konnte nicht eindeutig bestätigt werden, so dass die Messwerte ins zentrale Dosisregister eingetragen wurden.

Im Kernkraftwerk Mühleberg haben im Berichtsjahr 23 Mitarbeitende jeweils eine Individualdosis von mehr als 10 mSv akkumuliert. Die höchste Einzeldosis betrug 13 mSv und lag deutlich unter dem gesetzlichen Grenzwert von 20 mSv. Die Ursachen waren umfangreiche und dosisintensive Arbeiten bei Rückbautätigkeiten mit Bedarf an spezialisiertem Personal. Zudem ergaben sich in bestimmten Arbeitsbereichen höhere Ortsdosisleistungen als zuvor angenommen.

Tabelle 7: Personenkollektivdosen durch externe Bestrahlung seit 1976. S = Anzahl der Personen. N = Kollektive Dosis [pers-Sv].

Jahr	Mediz	zin	Univers und Fors		Kernkratund ZV		Industri Verschie		То	tal
	S	N	S	N	S	N	S	N	S	N
1976	19134	5.36	5046	5.68	960	8.14	3590	1.74	28730	20.92
1977	21284	6.06	6429	5.57	1021	8.08	4057	1.57	32791	21.28
1978	23948	7.06	8838	6.24	974	6.05	4312	2.06	38072	21.40
1979	25945	7.43	9434	6.14	1690	6.25	4211	2.67	41280	22.50
1980	27408	6.85	8394	4.54	1915	8.86	4457	1.31	42174	21.56
1981	28193	6.72	8593	3.45	2056	9.13	4589	1.31	43431	20.62
1982	28806	4.92	7903	3.13	2155	10.40	4513	0.97	43377	19.41
1983	32370	3.68	8186	3.00	2315	14.93	3899	0.98	46770	22.60
1984	33640	2.67	8759	2.74	3607	10.85	3944	0.56	49950	16.82
1985	34376	2.38	8673	3.08	3702	12.17	4229	0.75	50980	18.38
1986	35271	1.63	8811	2.92	3898	20.27	4434	0.45	52414	25.27
1987	35919	1.76	8562	3.04	3724	13.55	4554	0.42	52759	18.77
1988	37267	1.85	8855	3.00	3840	12.51	4748	0.44	54710	17.80
1989	37551	1.53	9232	2.37	3717	12.31	4990	0.50	55490	16.71
1990	37061	1.52	9061	2.60	4171	8.20	4684	0.43	54977	12.75
1991	38052	1.34	9392	2.39	4385	9.07	4820	0.44	56649	13.24
1992	38779	1.39	9606	2.55	4592	8.47	4846	0.61	57823	13.02
1993	39588	1.59	9565	1.63	4560	8.10	4806	0.33	58519	11.65
1994	39927	1.67	9578	1.67	4139	6.53	4718	0.33	58362	10.20
1995	40988	1.27	9592	1.87	4117	5.56	4572	0.31	59269	9.01
1996	42041	1.53	9896	1.89	4427	5.43	4646	0.34	61010	9.19
1997	42531	1.45	9590	1.57	3773	4.29	4747	0.35	60641	7.66
1998	42616	1.15	9801	1.37	3556	3.75	4710	0.26	60683	6.53
1999	43545	1.01	9632	1.01	3823	4.50	4845	0.25	61845	6.77
2000	44360	0.89	11303	1.15	3193	3.08	4822	0.25	63678	5.37
2001	45811	0.86	10345	0.67	3330	3.40	4805	0.23	64291	5.16
2002	47256	0.89	9214	0.43	3189	2.92	4828	0.21	64487	4.45
2003	48292	0.87	8676	0.72	3531	3.02	4846	0.20	65345	4.81
2004	50068	1.06	9079	0.56	3828	4.25	4522	0.24	67497	6.11
2005	50823	1.11	7847	0.68	3955	3.97	4506	0.27	67131	6.03
2006	52129	1.08	9242	0.64	3885	3.03	4566	0.25	69822	5.00
2007	53396	1.15	9239	0.44	4211	3.05	4732	0.19	71578	4.83
2008	54893	1.18	9468	0.47	4689	3.62	4876	0.25	73926	5.52
2009	56259	1.03	9856	0.51	4814	3.17	5015	0.18	75944	4.89
2010	57489	1.23	10311	0.60	5329	3.99	5259	0.21	78388	6.03
2011	59300	1.39	10534	0.63	5264	3.00	5547	0.49	80645	5.51
2012	61325	1.29	11372	0.62	5881	4.29	5648	0.18	84226	6.38
2013	63452	1.35	11860	0.77	5452	3.30	5856	0.20	86620	5.62
2014	66032	1.19	12983	0.89	5381	3.08	6001	0.23	90397	5.39
2015	68270	1.10	13235	0.34	6230	4.22	6018	0.22	93753	5.88
2016	70406	1.15	13280	0.32	5172	2.87	6284	0.18	95142	4.52
2017	72470	1.15	13936	0.30	5284	3.48	6558	0.20	98248	5.13
2018	70503	1.15	14443	0.32	4599	2.44	6851	0.25	96396	4.17
2019	67858	1.07	13427	0.34	4737	2.38	8682	0.24	94704	4.03
2020	68905	0.91	10490	0.25	4499	2.25	8541	0.20	92435	3.61
2021	70228	0.98	10865	0.24	6037	4.62	9208	0.25	96338	6.09
2022	72382	0.98	11462	0.22	5448	2.75	9827	0.24	99119	4.18
2023	73261	1.01	11866	0.21	5287	2.23	10291	0.32	100705	3.78
2024	74300	1.06	12888	0.18	5576	3.30	10893	0.34	103657	4.89

9 Trend der letzten 49 Jahre

Die Kollektivdosen bei externer Bestrahlung (ohne kosmische Strahlung) der beruflich strahlenexponierten Personen in der Schweiz sind im Laufe der letzten 49 Jahre deutlich gesunken, trotz kontinuierlicher Zunahme der Anzahl überwachter Personen. Zu Beginn der statistischen Erfassung im Jahr 1976 lag die gesamte Kollektivdosis durch äussere Bestrahlung bei ca. 21 Personen-Sv, am Ende der erfassten Periode beträgt der aktuelle Wert 4.86 Personen-Sv.

Die Gesamtanzahl der beruflich strahlenexponierten Personen ist in derselben Periode um einen Faktor drei gestiegen – von ca. 30 000 auf ca. 110 000.

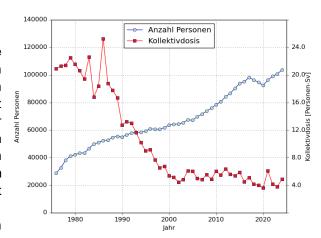
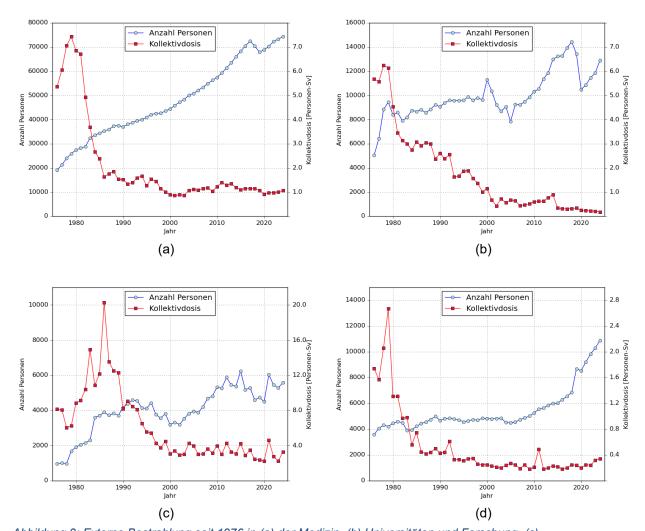
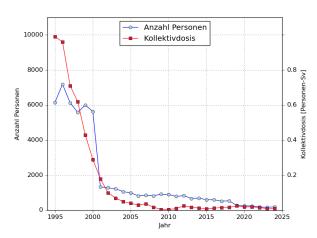


Abbildung 8: Externe Bestrahlung seit 1976 (ohne Flugpersonal).




Abbildung 9: Externe Bestrahlung seit 1976 in (a) der Medizin, (b) Universitäten und Forschung, (c) Kernkraftwerken und ZWILAG, (d) Industrie und Verschiedenes (Handel, öffentliche Dienste, ..).

Die mittlere Dosis pro Person hat in diesem Zeitraum von 0.73 mSv pro Jahr auf 0.04 mSv abgenommen. Der Hauptgrund für diese Abnahme waren Optimierungsprozesse in den 90er Jahren, welche insbesondere in den Kernkraftwerken zu einer deutlichen Dosisreduktion geführt haben.

Die Aufschlüsselung der Kollektivdosen nach den verschiedenen Tätigkeitsbereichen ergibt ein ähnliches Ergebnis. In allen Bereichen ist im Laufe der Zeit zunächst eine deutliche Abnahme der Kollektivdosen zu verzeichnen (Abbildung 9, (a) bis (d)). Bei den Kollektivdosen im medizinischen Bereich ist die starke Abnahme von 1982 - 1985 auf die Umstellung von Filmdosimetern auf

Thermolumineszenzdosimeter (TLD) zurückzuführen. Mit der Filmdosimetrie wurden die Dosen überschätzt.

In den letzten Jahren scheint sich die Kollektivdosis in der Medizin zu stabilisieren. In Abbildung 9 (c), die den Bereich der Kernkraftwerke zeigt, sind die Dosisspitzen auf dosisintensive Revisions- und Nachrüstarbeiten zurückzuführen. Von diesen Schwankungen abgesehen deuten auch hier die Daten auf eine Stabilisierung der Kollektivdosis auf konstantem Niveau ab dem Jahr 2000 hin.

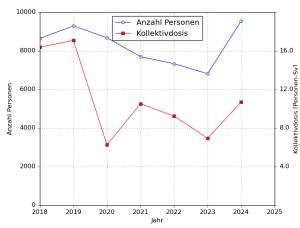


Abbildung 10: Interne Bestrahlung seit 1995.

Abbildung 11: Exposition durch kosmische Strahlung seit 2018.

Tabelle 8: Personenkollektivdosen durch interne Bestrahlung seit 1995.

Tab	Anzahl	Kollektivdosis
Tab	Personen*	[Personen-Sv]
1995	6154	0.99
1996	7193	0.96
1997	6128	0.71
1998	5586	0.62
1999	5996	0.43
2000	5636	0.29
2001	1332	0.18
2002	1287	0.1
2003	1223	0.07
2004	1065	0.05
2005	994	0.04
2006	828	0.03
2007	859	0.037
2008	826	0.018
2009	917	0.005
2010	901	0.004
2011	792	0.010
2012	838	0.025
2013	673	0.017
2014	694	0.013
2015	603	0.009
2016	599	0.012
2017	527	0.016
2018	538	0.017
2019	278	0.025
2020	252	0.019
2021	245	0.020
2022	185	0.015
2023	179	0.010
2024	192	0.010

Seit der Inkraftsetzung der StSV im Jahre 1994 werden durch die Personendosimetriestellen die effektiven Folgedosen durch innere Bestrahlung (E₅₀) ermittelt und seit dem Jahr 2001 auch dem ZDR gemeldet. Die Abnahme der Kollektivdosis infolge interner Bestrahlung ist beträchtlich und beträgt seit dem Jahr 1995 mehr als einen Faktor 20 (Tabelle 8 und Abbildung 10). Diese Abnahme ist einerseits einer Optimierung der Arbeiten in den Leuchtfarbenbetrieben und andererseits einem Rückgang der verarbeiteten Tritium-Leuchtfarbe in der Uhrenindustrie zuzuschreiben. Seit 2009 wird keine Tritium-Leuchtfarbe mehr verarbeitet. Die in der Uhrenindustrie akkumulierten Dosen resultieren von Personen, die in Räumen arbeiten, in denen Zeiger und Zifferblätter mit Tritium-Leuchtfarbe gelagert werden. Zudem werden Dosen bei Personen festgestellt, die Tritiumgas-Lichtquellen (GTLS) für Spezialuhren herstellen oder montieren. Die Daten von Dosen durch innere Bestrahlung vor 1995 können nicht direkt in den Vergleich miteinbezogen werden, da andere Berechnungsmethoden und Dosisfaktoren verwendet wurden.

Abbildung 11 zeigt die Entwicklung der Anzahl von Personen, die gegenüber kosmischer Strahlung exponiert sind, sowie der entsprechenden Kollektivdosen seit 2018.

Tabelle 9: Anzahl Personen mit Handdosen seit 1977.

			Anz	ahl Personen			
Jahr	Medizin	Universitäten & Forschung	Kernkraftwerke & ZWILAG	Industrie und Verschiedenes	Total	>75mSv	>150mSv
1977	135	140	53	107	435	22	10
1978	155	266	33	116	570	20	7
1979	206	211	86	159	662	19	8
1980	226	225	101	146	698	9	1
1981	254	182	82	152	670	14	5
1982	287	198	103	135	723	34	6
1983	206	162	65	214	647	11	3
1984	306	116	106	174	702	4	1
1985	302	223	83	187	795	7	4
1986	347	225	83	223	878	9	2
1987	396	269	127	225	1017	5	2
1988	523	284	94	236	1137	6	2
1989	504	307	74	307	1192	8	3
1990	558	333	68	311	1270	5	3
1991	590	420	136	324	1470	3	2
1992	582	270	237	326	1415	2	2
1993	563	410	111	348	1432	3	1
1994	606	399	95	363	1463	6	2
1995	650	404	87	361	1502	0	0
1996	581	322	102	407	1412	6	1
1997	594	361	92	368	1415	8	3
1998	629	341	44	307	1321	11	5
1999	696	340	52	293	1381	10	2
2000	657	279	40	280	1256	9	2
2001	692	286	53	228	1259	12	2
2002	742	274	45	208	1269	11	2
2003	708	265	40	183	1196	7	1
2004	773	274	39	157	1243	13	3
2005	820	290	39	129	1278	13	4
2006	820	289	50	154	1313	13	2
2007	861	288	40	165	1354	10	3
2008	958	326	47	147	1478	10	1
2009	975	315	35	134	1459	16	3
2010	1077	290	54	127	1548	14	4
2011	1112	285	75	103	1575	17	10
2012	1202	318	93	111	1724	17	3
2013	1261	282	61	106	1710	13	3
2014	1311	285	31	111	1738	14	1
2015	1430	291	104	80	1905	16	0
2016	1465	303	120	82	1970	14	0
2017	1550	320	114	67	2051	11	0
2018	1823	335	56	80	2294	65	20
2019	2121	288	88	78	2575	85	33
2020	2151	267	72	64	2554	101	47
2021	2113	249	260	74	2696	114	47
2022	2150	310	176	118	2754	112	40
2023	2060	341	145	256	2802	111	42
2024	2096	315	205	285	2901	110	32

Die Anzahl der Personen, bei denen eine Handdosis ermittelt wird, ist in den letzten 49 Jahren in der Medizin kontinuierlich gestiegen (Tabelle 9 und Abbildung 12 (a)). Waren es 1977 noch 135 Personen, trugen im Berichtsjahr bereits rund 2 900 Personen ein Extremitätendosimeter. Anders sieht es in der Industrie aus, wo die Anzahl seit 1996 abnimmt. Betrachtet man lediglich Fälle mit einer akkumulierten Jahresdosis über 75 mSv, fällt zunächst eine Zunahme seit 1995 auf (Tabelle 9 und Abbildung 12 (b)). Diese höheren Jahreshanddosen stammen fast ausschliesslich aus den medizinischen Bereichen Nuklearmedizin und interventionelle Radiologie. Mit der Einführung des Korrekturfaktors bei Arbeiten mit offenen Quellen ist seit 2018 eine starke Zunahme hoher Handdosen zu verzeichnen.

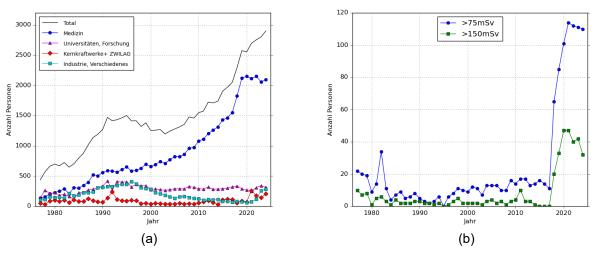


Abbildung 12 : (a) Handdosen: Anzahl Personen seit 1977. (b) Hohe Handdosen in allen Tätigkeitsbereichen seit 1977.

10 Schlussfolgerungen

Der vorliegende Bericht lässt auf einen allgemeinen guten Stand des Strahlenschutzes bei beruflich strahlenexponierten Personen in der Schweiz schliessen. Die Kollektivdosis hat sich seit dem Jahr 2000 auf ein konstantes Niveau mit geringen Schwankungen eingependelt und der Anteil der internen Strahlenexposition blieb in den letzten 15 Jahren äusserst gering.

Das Flugpersonal akkumulierte eine mittlere Jahresdosis von 1.12 mSv pro Person. Wie erwartet, ist diese Berufsgruppe am meisten exponiert, gefolgt vom Personal in den Kernkraftwerken (0.59 mSv). Das Flugpersonal ist der Kategorie B zugeordnet, was durch die Daten bestätigt wird. Keine Person hat in diesem Sektor eine jährliche Dosis von mehr als 6 mSv erhalten.

Tabelle 10: Grenzwertüberschreitungen seit 1995 (ohne Augenlinsendosen). E = Effektive Dosis; H_{extr} = Extremitätendosis.

Jahr	Bereich	Quelle	Dosis	Bemerkung
1995	Spital	X	E = 36.6 mSv	Orthopädie, Durchleuchtung
	Industrie	H-3	<i>E</i> = 24.6 mSv	Inkorporation
1996	Industrie	H-3	<i>E</i> = 5.2 mSv	Inkorporation (Schwangerschaft)
	Industrie	H-3	<i>E</i> = 29 mSv	Inkorporation
1997	Industrie	lr-192	<i>E</i> = 83 mSv	Gammagraphie
	Industrie	H-3	E = 4.6 mSv	Inkorporation (Schwangerschaft)
	Spital	X	H_{extr} = 517 mSv	interventionelle Radiologie
1998	Spital	X	E = 22.8 mSv	unklarer Vorfall
2002	Spital	Co-60	E = 22.8 mSv	Strahlentherapie
	Spital	I-131	H_{extr} = 1256 mSv	Nuklearmedizin, Kontamination
2004	Zahnarzt	X	<i>E</i> = 22.2 mSv	unklarer Vorfall
2005	Spital	X	E = 20.2 mSv	Kardiologie, Durchleuchtung
2007	Spital	Y-90	H_{extr} = 1300 mSv	Nuklearmedizin, Fingerkuppe
2009	KKW	γ	E = 37.8 mSv	2 Personen bei Revision
			<i>E</i> = 25.4 mSv	
2010	KKW	γ	<i>E</i> = 28 mSv	Taucher bei Revision
			H_{extr} = 7500 mSv	
	Spital	Х	<i>E</i> = 30.2 mSv	Angiographie, Durchleuchtung
	Spital	Y-90	H_{extr} = 1000 mSv	medizinische Forschung
2011	Spital	Х	E = 27 mSv	Kardiologie, Durchleuchtung
	Spital	Y-90	H_{extr} = 2000 mSv	Kontamination Nuklearmedizin
	Industrie	e-, γ	E = 278 mSv	Elektronenstrahlvernetzungsanlage
2012	Spital	Y-90	H_{extr} = 1000 mSv	Nuklearmedizin
2014	Spital /	X	H_{extr} = 700 mSv	Reparatur einer
	Industrie			Durchleuchtungsanlage
2016	Spital	unbekannt	<i>E</i> = 24.1 mSv	Nuklearmedizin
2017	Spital	unbekannt	<i>E</i> = 29.6 mSv	Notfallstation
2018	Spital	PET	$H_{\text{extr}} = 552 \text{ mSv}$	Nuklearmedizin
	Spital	PET	H_{extr} = 562 mSv	Nuklearmedizin
2020	Spital	X	H_{extr} = 542 mSv	Interventionelle Radiologie
2023	Spital	unbekannt	<i>E</i> = 20.2 mSv	Konventionelle Radiologie
2023	Spital	Χ	H_{extr} = 569 mSv	Interventionelle Radiologie
2024	Spital	Χ	H_{eye} = 28 mSv	Interventionelle Radiologie
2024	Spital	Χ	<i>E</i> = 20,1 mSv	Konventionelle Radiologie

11 Weitere Publikationen

Weitere Publikationen sind auf den folgenden Web-Seiten zu finden:

- Jahresbericht der Abteilung Strahlenschutz des BAG www.str-rad.ch
- Jahresbericht des ENSI www.ensi.ch

- Jahresbericht der Suva www.suva.ch
- Tätigkeitsbericht der Eidgenössischen Kommission für Strahlenschutz (KSR) www.ksr-cpr.admin.ch
- Tätigkeitsbericht der Eidgenössischen Kommission für nukleare Sicherheit (KNS) www.bfe.admin.ch/kns

12 Referenzen

814.501, RS. 2017. Strahlenschutzverordnung StSV. [Online] 27. April 2017.

https://www.fedlex.admin.ch/eli/cc/2017/502/de.

814.501.43, **RS. 2017**. Verordnung des EDI über die Personen- und Umgebungsdosimetrie. [Online] 26. April 2017. https://www.fedlex.admin.ch/eli/cc/2017/504/de.

ISO-29661. 2012. Reference radiation fields for radiation protection. [Online] 2012.

L-10-04, Wegleitung. 2018. Extremitätendosimetrie beim Umgang mit offenen radioaktiven .

Extremitätendosimetrie beim Umgang mit offenen radioaktiven . [Online] 07. Juli 2018.

https://www.bag.admin.ch/bag/de/home/gesetze-und-bewilligungen/gesuche-

bewilligungen/bewilligungen-aufsicht-im-strahlenschutz/wegleitungen.html.

Recommendations-no17. 2021. Recommendations No. 17 Eye Lens Dosimetry. [Online] Septembre 2021. https://ssrpm.ch/wp-content/uploads/2021/12/recommendations-no17-eye-lens-dosimetry-2021-12.pdf.

Strahlenschutz. [Online] www.str-rad.ch.