

Eidgenössische Kommission für Strahlenschutz und Überwachung der Radioaktivität Commission fédérale de protection contre les radiations et de surveillance de la radioactivité Commissione federale della radioprotezione e della sorveglianza della radioattività

Verabschiedet in Plenarsitzung am 24.11.2004

Empfehlungen zur Sicherstellung der Messdatenqualität von Umgebungsdosimetriesystemen

1. Gegenstand

Es werden 4 Typen von Umgebungsdosimetriesystemen unterschieden:

- Typ 1: Ortsfeste passive Dosimeter mit einer Expositionszeit von mindestens einem Monat
 - z.B. TLD, Spaltspurdosimeter
- Typ 2: Ortsfeste Dosisleistungsmessgeräte mit automatischer Messwertübertragung
 - z.B. NADAM, MADUK, Messnetz mit Ionisationskammern
- Typ 3: Mobile Dosisleistungsmessgeräte
- z.B. EG90, Scintomat, Neutronensonden
- Typ 4: Spektrometriesysteme mit Auswertealgorithmus für Dosisleistung¹ z.B. in situ Gammaspektrometrie, Aeroradiometrie

2. Zweck der Umgebungsdosimetrie

- Messung der Ortsdosen durch Direktstrahlung (inkl. Skyshine) von mehr als 1 mSv/Jahr (resp. 5 mSv/Jahr) gemäss Art. 102, Abs. 3, StSV.
- Nachweis von Abweichungen vom natürlichen Strahlungsuntergrund.
- Bereitstellen von Zusatzinformationen über Strahlenfelder und Dosisverteilungen bei Störfällen.

3. Technische Anforderungen an Umgebungsdosimetriesysteme

- Die Dosimetriesysteme müssen dem Stand der Technik entsprechen und die Anforderungen nach Anhang 1 erfüllen, wobei
 - bezüglich der Energieabhängigkeit Abweichungen von den Anforderungen zulässig sind, wenn das Dosimetriesystem in einem bekannten Strahlenfeld eingesetzt wird, das nur in einem Teil des Energiebereich einen signifikanten Dosisbeitrag liefert.
 - für die Ermittlung der Dosis ein Normalisierungsfaktor relativ zu den Referenzbedingungen angewendet werden kann, falls die Dosimeter in einem bekannten Strahlenfeld exponiert werden, das sich erheblich vom Referenzstrahlenfeld unterscheidet.
- Unter Referenzbedingungen (s. 5.1) darf der ermittelte Wert nicht mehr als \pm 20 Prozent vom Sollwert abweichen.

Das Erfüllen dieser Anforderungen stellt im Allgemeinen sicher, dass im Einsatzbereich der Dosimetriesysteme die gesamte Messunsicherheit für Photonenstrahlung nicht mehr als 40 % und für Neutronenstrahlung nicht mehr als einen Faktor 3 beträgt.

_

Fax: 031 322 83 83

¹ Es wird hier keine Anforderung an Funktionen gestellt, die nicht der Ermittlung der Dosisleistung dienen.

4. Qualitätssicherung

4.1. Allgemeine Anforderungen

- Für die Messsysteme muss ein Qualitätssicherungsprogramm bestehen.
- Die Kalibrierung der Systeme muss auf nationale Normale rückführbar sein.
- Umgebungsdosimetriesysteme der Typen 2 und 3 müssen geeicht sein.

4.2. Vergleichsmessungen

- Bei Vergleichsmessungen von Systemen des Typs 1 muss die Messgenauigkeit unter Referenzbedingungen überprüft werden. Solche Vergleichsmessungen sind alle 5 Jahre durchzuführen.
- Liegen die ermittelten Dosiswerte bei Referenzbedingungen ausserhalb von 20 Prozent des Sollwertes, so muss der Betreiber des Umgebungsdosimetriesystems die Ursachen abklären und Korrekturmassnahmen ergreifen.
- Werden bei Vergleichsmessungen ergänzende Tests durchgeführt, müssen die Anforderungen nach Anhang 1 erfüllt sein.
- Die Ermittlung der Dosisleistung mit Umgebungsdosimetriesystemen des Typs 4 muss experimentell verifiziert werden. Soweit möglich sollen die Systeme bei Vergleichsmessungen geprüft werden.

5. Definitionen und technische Festlegung

5.1. Referenzbedingungen

Für Systeme der Typen 1 – 3 müssen die Referenzstrahlungsfelder den Normen ISO 4037 (Photonenstrahlung) und ISO 8529-3 (Neutronenstrahlung) entsprechen.

Der Dosisbereich muss für Typ 1 zwischen 0.5 und 5 mSv, resp. der Dosisleistungsbereich für die Typen 2 und 3 zwischen 0.1 und 10 mSv/h für Strahlenfelder folgender Quellen liegen:

a. Photonen: Cäsium-137-Quelle

b. Neutronen: Americium/Beryllium-Quelle

5.2. Messgrösse

Die Messgrösse für die Ortsdosimetrie ist die Umgebungs-Äquivalentdosis H*(10). Sie wird anhand von Konversionskoeffizienten nach Anhang 2 aus den folgenden Grössen abgeleitet:

- a. Luftkerma (Ka) für Photonen;
- b. Neutronenfluenz (Φ) für Neutronen.

Die Rückverfolgbarkeit der Messsysteme auf nationale Normale erfolgt über diese Grössen.

Fax: 031 322 83 83

Anforderungen an Umgebungsdosimetriesysteme Typ 1

Photonenstrahlung

- a. Messbereich 0.1 mSv bis 100 mSv
- b. LinearitätAbweichung < 15 % im Bereich von 1 mSv bis 100 mSv
- c. Energieabhängigkeit Abweichung < 30 % im Bereich von 50 keV bis 5 MeV
- d. Winkelabhängigkeit Abweichung < 20% für Energien > 50 keV
- e. Reproduzierbarkeit Standardabweichung s < 10 %
- f. Fading Effekt < 20% / Expositionsperiode

Neutronenstrahlung

- a. Messbereich 0.05 mSv bis 10 mSv
- b. Linearität Abweichung < 30 % im Bereich von 0.1 mSv und 10 mSv
- c. Energieabhängigkeit
 Abweichung < Faktor 2 für realistische Feldspektren im Einsatzbereich des Dosimeters
- d. ReproduzierbarkeitStandardabweichung s < 30 %
- e. Fading Effekt < 20% / Expositionsperiode

Anforderungen an Umgebungsdosimetriesysteme Typ 2 und 3

Photonenstrahlung

- a. Messbereich50 nSv/h bis 100 mSv/h
- b. LinearitätAbweichung < 15 % bis 100 mSv/h
- c. Energieabhängigkeit Abweichung < 30 % im Bereich von 50 keV bis 5 MeV
- d. WinkelabhängigkeitAbweichung < 20% für Energien > 50 keV

Neutronenstrahlung

- a. Messbereich100 nSv/h bis 100 mSv/h
- b. Linearität Abweichung < 30 % bis 100 mSv/h
- c. Energieabhängigkeit Abweichung < Faktor 2 für realistische Feldspektren im Einsatzbereich des Dosimeters

Anforderungen an Umgebungsdosimetriesysteme Typ 4

Photonenstrahlung

Messbereich 50 nSv/h bis 10 μSv/h

Konversionskoeffizienten

a. Konversionskoeffizienten für Photonen

Konversionskoeffizienten von Luftkerma in Umgebungs-Äquivalentdosis H*(10)

Quelle Qualität	Mittlere Energie (keV)	h*(10) (Sv/Gy)
N – 60	48	1.59
Am - 241	59	1.74
N - 80	65	1.73
N - 100	83	1.71
N - 120	100	1.64
N – 150	118	1.58
N - 200	164	1.46
N - 250	208	1.39
N - 300	250	1.35
Cs - 137	662	1.20
Co - 60	1250	1.16
Ti (Target)	5140	1.11

Referenzen: ICRP 74, ISO 4037-3

8 décembre 2004

Page 5 sur 6 e-mail: christophe.murith@bag.admin.ch Téléphone: 031 323 41 55

Fax: 031 322 83 83

b. Konversionskoeffizienten für Neutronen

Konversionskoeffizienten $h^*_\Phi(10)$ zur Umrechnung von Neutronenfluenz Φ in Umgebungs-Äquivalentdosis $H^*(10)$

Neutronenquelle/ Neutronen-Energie (MeV)	h* ₀ (10) pSv.cm ²
²⁵² Cf (D2O-moderiert)	105
²⁵² Cf	385
²⁴¹ Am-Be (α,n)	391
Thermische Neutronen	10.6
0,024	19.3
0,144	127
0,250	203
0,57	343
1,2	425
2,5	416
2,8	413
3,2	411
5,0	405
14,8	536
19	584
30	515
50	400
75	330
100	285
150	245
200	260

Referenzen: ISO 8529-3, ICRP 74.