Health Technology Assessment (HTA)

Title	Calcitonin gene-related peptide antagonists for the prevention of migraine	
Author/Affiliation	Konstance Nicolopoulos, Anita Fitzgerald, Magdalena Ruth Moshi, Ross McLeod, Danielle Stringer, Joanna Duncan, Thomas Vreugdenburg Royal Australasian College of Surgeons	
Technology	Erenumab (Aimovig®)	
	Fremanezumab (Ajovy®)	
	Galcanezumab (Emgality®)	
	Eptinezumab (Vyepti®)	
Type of Technology	Pharmaceuticals	
Date	25 August 2023	

HTA Report: Appendices

Contents

Appendix A: Conditions for CGRP antagonist reimbursement in Switzerland9
Appendix B: Sources of literature (databases)
Literature sources
Search results
Systematic review search results 16
Efficacy, effectiveness, and safety search results
Economic search results 19
Clinical trials search results
Appendix C: Study inclusion and exclusion criteria
Appendix D: List of excluded publications at full text
Incorrect population (k=6)
Incorrect intervention (k=13)
Incorrect comparator (k=4)
Incorrect outcome (k=7)
Incorrect publication type (k=184)
Incorrect study design (k=157) 45
Incorrect language (k=0) 59
Incorrect date limit (k=4) 60
Duplicates (k=93) 60
Unable to access (k=0)
Trial data not included in analyses (k=17) 69
Postface: List of excluded publications at full text (updated search)71
Appendix E: Minimum clinically important differences and improvements for outcomes of interest 74
Appendix F: Additional Study Characteristics
Postface: Additional Study Characteristics (updated search)

Appendix G: Data Extraction Tables	83
Monthly migraine days (MMDs)	83
Monthly headache days (MHDs)	
Migraine Headache days (MHDs) with acute medication usage	
Response rate (>50%)	104
Response rate (>75%)	111
Response rate (100%)	116
MSQ	119
HIT-6	126
MIDAS	131
EQ-5D	135
SF-36	137
Migraine pain intensity	138
Adverse events	139
Treatment related adverse events	142
Serious adverse events	144
Adverse events leading to discontinuation	149
Appendix H: Sensitivity Analyses	155
Appendix I: Economic evaluation study inclusion and exclusion overview	167
Appendix J: Data extraction template for other relevant economic studies	171
Appendix K: Economic evaluation search of HTA agency websites	176
Appendix L: Data extraction template for HTA agency economic studies	182
Appendix M: Ongoing clinical trials	189
Appendix N: Clinical practice position statements and guidelines	193
Reference list	204

Tables

Table A1	Biomedical bibliographic databases 12
Table A2	Clinical trial registries 12
Table A3	HTA agency websites 12
Table A4	Specialty websites 15
Table A5	Summary of biomedical bibliographic database search results
Table A6	Summary of biomedical bibliographic database search results (updated search) 17
Table A7	Search strategy – Ovid (Medline and Embase) [09-03-2022] 18
Table A8	Search strategy – Cochrane Library [09-03-2022] 19
Table A9	Search strategy – EconLit [09-03-2022] 19
Table A10	Search strategy – INAHTA HTA Database [09-03-2022] 20
Table A11	Search strategy – CEA Registry [09-03-2022] 20
Table A12	Clinical trials search strategy [09-03-2022]
Table A13	Search strategy for Ovid (Medline and Embase) – 27 January 2023 22
Table A14	Search strategy for Cochrane Library – 9 February 2022
Table A15	Search strategy for EconLit – 9 February 2023 24
Table A16	Search strategy INAHTA HTA Database – 9 February 2023 24
Table A17	Search strategy for CEA registry – 9 February 2023 24
Table A18	Study inclusion and exclusion criteria25
Table A19	Minimal clinically important differences/improvements for outcomes of interest
Table A20	Study characteristics: Participant inclusion/exclusion criteria conditions for concomitant
	preventative migraine medication and previous migraine preventative treatment failure 76
Table A21	Study characteristics: Participant inclusion/exclusion criteria conditions for concomitant
	preventative migraine medication and previous migraine preventative treatment failure
	(updated search) 81
Table A22	MMDs in patients receiving erenumab
Table A23	MMDs in patients receiving eptinezumab

Table A24	MMDs in patients receiving fremanezumab	. 87
Table A25	MMDs in patients receiving galcanezumab	. 89
Table A26	MHDs in patients receiving erenumab	. 91
Table A27	MHDs in patients receiving eptinezumab	. 91
Table A28	MHDs in patients receiving fremanezumab	. 92
Table A29	MHDs in patients receiving galcanezumab	. 95
Table A30	MHDs with acute medication usage, erenumab	. 96
Table A31	MHDs with acute medication usage, eptinezumab	. 99
Table A32	MHDs with acute medication usage, fremanezumab	. 99
Table A33	MHDs with acute medication usage, galcanezumab	101
Table A34	Response rate (>50%), erenumab	104
Table A35	Response rate (>50%), eptinezumab	106
Table A36	Response rate (>50%), fremanezumab	107
Table A37	Response rate (>50%), galcanezumab	109
Table A38	Response rate (>75%), erenumab	111
Table A39	Response rate (>75%), eptinezumab	112
Table A40	Response rate (>75%), fremanezumab	113
Table A41	Response rate (>75%), galcanezumab	114
Table A42	Response rate (100%), erenumab	116
Table A43	Response rate (100%), eptinezumab	116
Table A44	Response rate (100%), fremanezumab	117
Table A45	Response rate (100%), galcanezumab	118
Table A46	MSQ in patients receiving erenumab	119
Table A47	MSQ in patients receiving fremanezumab	121
Table A48	MSQ in patients receiving galcanezumab	122
Table A49	HIT-6 in patients receiving erenumab	126
Table A50	HIT-6 in patients receiving eptinezumab	127

Table A51	HIT-6 in patients receiving fremanezumab128
Table A52	HIT-6 in patients receiving galcanezumab130
Table A53	MIDAS in patients receiving erenumab 131
Table A54	MIDAS in patients receiving fremanezumab
Table A55	MIDAS in patients receiving galcanezumab 133
Table A56	EQ-5D in patients receiving erenumab135
Table A57	EQ-5D in patients receiving eptinezumab 135
Table A58	EQ-5D in patients receiving fremanezumab136
Table A59	SF-36 in patients receiving erenumab 137
Table A60	SF-36 in patients receiving eptinezumab 137
Table A61	Migraine/headache pain intensity in patients receiving erenumab
Table A62	Adverse events in patients receiving erenumab 139
Table A63	Adverse events in patients receiving fremanezumab
Table A64	Adverse events in patients receiving galcanezumab 141
Table A65	Treatment related adverse events (TRAE) in patients receiving erenumab 142
Table A66	Treatment related adverse events (TRAE) in patients receiving eptinezumab 142
Table A67	Treatment related adverse events (TRAE) in patients receiving fremanezumab 142
Table A68	Treatment related adverse events (TRAE) in patients receiving galcanezumab 143
Table A69	Serious adverse events (SAE) in patients receiving erenumab 144
Table A70	Serious adverse events (SAE) in patients receiving eptinezumab
Table A71	Serious adverse events (SAE) in patients receiving fremanezumab 146
Table A72	Serious adverse events (SAE) in patients receiving galcanezumab 147
Table A73	Adverse events leading to discontinuation, erenumab
Table A74	Adverse events leading to discontinuation, eptinezumab
Table A75	Adverse events leading to discontinuation, fremanezumab 152
Table A76	Adverse events leading to discontinuation, galcanezumab
Table A77	Rationale for inclusion and exclusion

Table A78	Data extraction template for other economic studies	171
Table A79	HTA agency relevant study search	176
Table A80	Data extraction template for HTA agency economic studies	182
Table A81	Ongoing clinical trials fitting the inclusion criteria	189
Table A82	Summary of clinical guidelines and recommendations regarding CGRP antagonists for	r the
	prevention of migraine	193

Figures

Figure A1	MMD, episodic migraine – Erenumab 70 mg 15	55
Figure A2	MMD, episodic migraine – Erenumab 140 mg 15	55
Figure A3	MHD with acute medication use, episodic migraine – Erenumab 70 mg 15	56
Figure A4	MHD with acute medication use, episodic migraine – Erenumab 140 mg 15	57
Figure A5	Response rate (>50%), episodic migraine – Erenumab 70 mg 15	58
Figure A6	Response rate (>50%), episodic migraine – Erenumab 140 mg 15	59
Figure A7	Response rate (>50%), episodic migraine – fremanezumab 225/675 mg 16	30
Figure A8	Response rate (>75%), episodic migraine - Erenumab 70 mg 16	51
Figure A9	Response rate (>75%), episodic migraine – Erenumab 140 mg 16	31
Figure A10	Response rate (100%), episodic migraine, erenumab 140 mg 16	32
Figure A11	Adverse events, episodic migraine – Erenumab 70 mg 16	32
Figure A12	Adverse events, episodic migraine – Erenumab 140 mg 16	33
Figure A13	TRAEs, episodic migraine – Fremanezumab 225 mg and 675 mg 16	33
Figure A14	SAE, episodic migraine – Erenumab 70 mg 16	34
Figure A15	SAE, episodic migraine – Erenumab 140 mg 16	34
Figure A16	SAE, episodic migraine – Fremanezumab 225 mg and 675 mg 16	35
Figure A17	AEs leading to discontinuation, episodic migraine – Erenumab 70 mg 16	35
Figure A18	AEs leading to discontinuation, episodic migraine – Erenumab 140 mg 16	6
Figure A19	AEs leading to discontinuation, episodic migraine – fremanezumab 225 mg and 675 mg	١
		6

Appendix A: Conditions for CGRP antagonist reimbursement in Switzerland

Overview of the coverage conditions of erenumab (Aimovig®), fremanezumab (Ajovy®), galcanezumab (Emgality®) and eptinezumab (Vyepti®) according to the Spezialitätenliste¹:

- 1. The treatment needs an approval of costs by the health insurer after prior consultation with the medical officer. The granted approval of costs must cover a period of 12 months.
- A Foederatio Medicorum Helveticorum (FMH)/Swiss Medical Association-certified specialist in neurology must make the diagnosis, prescribe the CGRP antagonist and supervise the follow-up.
- 3. Adult patients have to suffer for at least 1 year from either chronic or episodic migraines and their attacks have to be documented for at least 3 months. Chronic migraine patients have to experience migraines with attacks that last at least 4 hours on at least 15 days per month. Episodic migraine patients have to experience migraines with attacks that last at least 4 hours on at least 8 days per month. Their attacks have to be characterised by an aura or strong pain intensity combined with severe nausea/vomiting or severely debilitating photoor phonophobia.
- 4. Patients have to be pre-treated with at least 2 prophylactic therapies including beta blockers, calcium antagonists, anticonvulsants or amitriptyline^a for at least 3 months each. Patients have to either respond insufficiently to the prophylactic therapies or the prophylactic therapies are contraindicated for the patient, or they had to be discontinued due to documented and clinically relevant side effects. (An insufficient treatment response is defined as a lack of reduction in migraine days by at least 50% after 3 months of treatment compared to before commencing treatment.)
- 5. In order for the treatment to be continued after 3 months, the average number of days per month with a migraine have to be reduced compared to the average value for the 3 months before commencing treatment and the reduction has to be documented in a migraine journal. This must be assessed by the FMH specialist in neurology.
- 6. In order for the treatment to be continued after 6 months, the average number of days with a migraine have to be reduced by at minimum 50% compared to the average value for the

^a Amitriptyline is not listed as an approved prior prophylactic treatment needed for the prescription of erenumab (Aimovig®).

3 months before commencing treatment and the reduction has to be documented in a migraine journal. This must be assessed by the FMH specialist in neurology and reported in writing to the health insurer's medical officer.

- 7. In the case of an insufficient response to treatment with either erenumab, galcanezumab, fremanezumab or eptinezumab after 3 or 6 months, all further treatment attempts with the same CGRP antagonist or treatment with the other 3 CGRP antagonists is not reimbursed.
- 8. Treatment with erenumab, galcanezumab, fremanezumab or eptinezumab must be discontinued no later than 1 year after treatment initiation. In the case of a relapse within 6 months of discontinuation (i.e. at least 8 migraine days in a month), the resumption of treatment with a CGRP antagonist can be requested for an additional 12 months via a renewed approval of costs. If a relapse occurs after 6 months from discontinuation, the patient must meet the initial criteria for reimbursement as previously met for the first prescription.
- 9. Each subsequent year of treatment must meet the criteria listed above, where treatment must be discontinued and only recommenced upon relapse, with patients needing to meet the appropriate reimbursement criteria. This process may continue for as long as the treatment is still necessary and effective for the patient.
- 10. Upon request the following evidence must be submitted to the health insurer's medical officer:
 - Documentation of the duration, and insufficient response to prior prophylactic treatment before commencing a CGRP antagonist (i.e. based on medical records or migraine diary)
 - b. Before commencing treatment: A migraine diary recording 3 months prior to commencing CGRP antagonist treatment
 - c. Post-initiation of treatment: A migraine diary recording 3, 6 and 12 months of CGRP antagonist treatment

NOTE 1: The pack of Ajovy® 3 pre-filled syringes is only reimbursed for the explicit prescription of the quarterly dosing schedule.

NOTE 2: If 2 Emgality® pre-filled pens are used in the first month of treatment, Eli Lilly (Suisse) SA will reimburse CHF449.36 for one pre-filled pen at the request of the health insurer with whom the insured person was insured at the respective reference point. Value added tax (i.e. Mehrwertsteuer) cannot be reclaimed in addition to this amount. The request for reimbursement should generally be made within 6 months of the invoice being issued.

NOTE 3: For patients who require 300 mg of Vyepti® per infusion (according to prescription information), a fixed proportion of the costs for the second and third administered pack of Vyepti® 100 mg will be reimbursed by Lundbeck (Switzerland) AG based on the ex-factory price at the request of the health insurer with whom the insured person was insured at the time of procurement of the medicine. Lundbeck (Switzerland) AG will notify the health insurer of the reimbursement amount. Value added tax (i.e. Mehrwertsteuer) cannot be reclaimed in addition to this amount. The health insurer requests for reimbursement from Lundbeck (Switzerland) AG. Reimbursement requests should be made from the time of administration.

Appendix B: Sources of literature (databases)

Literature sources

Table A1 Biomedical bibliographic databases

Source	Website
OVID—Medline & Embase (combined)	https://ovidsp.ovid.com/
The Cochrane Library	https://www.cochranelibrary.com/
EconLit	https://www.aeaweb.org/econlit/
INAHTA HTA Database	https://database.inahta.org/
Cost-Effectiveness Analysis (CEA) Registry hosted by Tufts Medical Centre	https://cevr.tuftsmedicalcenter.org/databases/cea- registry

Abbreviations

CEA Registry = Cost-Effectiveness Analysis Registry hosted by Tufts Medical Centre, **DARE** = Database of Abstracts of Reviews of Effects, **HTA** = Health Technology Assessment Database, **NHS EED** = National Health Service Economic Evaluation Database, **York CRD** = University of York Centre for Reviews and Dissemination.

Table A2 Clinical trial registries

Source	Website
ClinicalTrals.gov	https://clinicaltrials.gov/
EU Clinical Trials Registry	https://www.clinicaltrialsregister.eu/

Abbreviations

EU = European Union.

Table A3 HTA agency websites

Source	Website	
Australia		
Adelaide Health Technology Assessment (AHTA)	https://www.adelaide.edu.au/ahta/pubs/	
Australian Safety and Efficacy Register of New Interventional Procedures—Surgical (ASERNIP-S)	https://www.surgeons.org/research-audit/research- evaluation-inc-asernips	
Austria		
Austrian Institute for Health Technology Assessment (AIHTA)	https://aihta.at/page/homepage/en	
Gesundheit Österreich GmbH (GOG)	http://www.goeg.at	
Argentina		
Institute for Clinical Effectiveness and Health Policy (IECS)	http://www.iecs.org.ar	
Belgium		
Belgian Health Care Knowledge Centre (KCE)	http://kce.fgov.be	
Brazil		
National Committee for Technology Incorporation (CONITEC)	http://conitec.gov.br/en/	
Agência Nacional de Saúde Suplementar/ National Regulatory Agency for Private Health Insurance and Plans (ANS)	https://www.gov.br/ans/pt-br	

Canada	
Institute of Health Economics (IHE)	http://www.ihe.ca
Institut National d'Excellence en Santé et en Services (INESSS)	https://www.inesss.qc.ca/en/home.html
The Canadian Agency for Drugs and Technologies in Health (CADTH)	http://www.cadth.ca/
Ontario Health (OH)	https://www.ontariohealth.ca/
Colombia	
Instituto de Evaluación Tecnológica en Salud (IETS)	http://www.iets.org.co
Denmark	
Social & Health Services and Labour Market (DEFACTUM)	http://www.defactum.net
Finland	
Finnish Coordinating Center for Health Technology Assessment (FinCCHTA)	https://www.ppshp.fi/Tutkimus-ja- opetus/FinCCHTA/Sivut/HTA-julkaisuja.aspx
France	
French National Authority for Health (Haute Autorité de Santé; HAS)	http://www.has-sante.fr/
Assistance Publique – Hôpitaux de Paris	http://cedit.aphp.fr
Germany	
Institute for Quality and Efficiency in Health Care (IQWiG)	http://www.iqwig.de
Federal Joint Committee (Gemeinsamer Bundesausschuss; G-BA)	https://www.g-ba.de/english/
Ireland	
Health Information and Quality Authority (HIQA)	http://www.hiqa.ie
Italy	
Agenzia Sanitaria e Sociale Regionale (ASSR)	http://www.inahta.org/members/assr/
HTA Unit in A. Gemelli Teaching Hospital (UVT)	https://www.policlinicogemelli.it/
National Agency for Regional Health services (Agenas)	http://www.agenas.it
Kazakhstan	
Ministry of Public Health of the Republic of Kazakhstan, Republican Centre for Health Development (RCHD)	http://www.rcrz.kz
Korea	
National Evidence-based healthcare Collaborating Agency (NECA)	www.neca.re.kr/eng
Malaysia	
Health Technology Assessment Section, Ministry of Health Malaysia (MaHTAS)	http://www.moh.gov.my
The Netherlands	
The Netherlands Organisation for Health Research and Development (ZonMw)	http://www.zonmw.nl
Zorginstituut Nederland (ZIN)	https://www.zorginstituutnederland.nl/
Norway	
The Norwegian Institute of Public Health (NIPHNO)	http://www.fhi.no/
Peru	
Institute of Health Technology Assessment and Research (IETSI)	http://www.essalud.gob.pe/ietsi/

Poland	
Agency for Health Technology Assessment and Tariff System (AOTMiT)	http://www.aotm.gov.pl
Republic of China, Taiwan	·
Center for Drug Evaluation (CDE)	http://www.cde.org.tw
Russian Federation	
Center for Healthcare Quality Assessment and Control (CHQAC)	www.rosmedex.ru
Singapore	
Agency for Care Effectiveness (ACE)	Agency for Care Effectiveness (ACE) (ace-hta.gov.sg)
Spain	•
Agencia de Evaluación de Tecnologias Sanitarias, Instituto de Salud "Carlos III"I / Health Technology Assessment Agency (AETS)	http://publicaciones.isciii.es/
Agency for Health Quality and Assessment of Catalonia (AQuAS)	http://aquas.gencat.cat
Andalusian HTA Agency	http://www.aetsa.org/
Basque Office for Health Technology Assessment (OSTEBA)	http://www.euskadi.eus/web01-a2ikeost/en/
Galician Agency for Health Technology Assessment (AVALIA-T)	http://acis.sergas.es
Health Sciences Institute in Aragon (IACS)	http://www.iacs.es/
Sweden	
Swedish Council on Technology Assessment in Health Care (SBU)	http://www.sbu.se/en/
Switzerland	
Swiss Federal Office of Public Health (SFOPH)	http://www.bag.admin.ch/hta
Tunisia	•
INEAS – National Authority for Assessment and Accreditation in Healthcare, TUNISIA	http://www.ineas.tn/fr
United Kingdom	
Healthcare Improvement Scotland (HIS)	http://www.healthcareimprovementscotland.org
National Institute for Clinical Excellence (NICE)	http://www.nice.org.uk/
Health Technology Wales (HTW)	http://www.healthtechnology.wales
National Institute for Health Research (NIHR), including HTA programme	http://www.nets.nihr.ac.uk/programmes/hta
United States	
Agency for Healthcare Research and Quality (AHRQ)	https://www.ahrq.gov/research/findings/index.html
Uruguay	·
Health Assessment Division, Ministry of Public Health (HAD)	http://www.msp.gub.uy

Table A4 Specialty websites

Source	Website
Australia	
Australian Pain Society	https://www.apsoc.org.au/Home
The Australian and New Zealand Headache Society	https://anzheadachesociety.org/
Australian and New Zealand Association of Neurologists	https://www.anzan.org.au/
Migraine and Headache Australia	https://headacheaustralia.org.au/#
Global	
International Association of the study of pain	https://www.iasp-pain.org/
International Headache Society	https://his-headache.org/en/resources/
World Federation of Neurology	https://wfneurology.org/
USA	
American Headache Society	https://americanheadachesociety.org/resources/
American Academy of Neurology	https://www.aan.com/
Canada	
Canadian Headache Society	https://headachesociety.ca/
United Kingdom	
Association of British Neurologists	https://www.theabn.org/
British Association for the Study of Headache	https://www.bash.org.uk/
Europe	
European Headache Federation	https://www.ehf-headache.com/
European Academy of Neurology	https://www.ean.org/
Danish Headache Society	https://dhos.dk/
Dutch Headache Society (NHV)	https://www.nederlandsehoofdpijnvereniging.nl/
French Headache Society	https://sfemc.fr/17-sfemc.html
German Society for Neurology (DGN)	https://dgn.org/
German Migraine and Headache Society (DMKG)	https://www.dmkg.de/german-migraine-and- headache-society
Portuguese Headache Society	http://www.cefaleias-spc.com/
Swiss Headache Society	https://headache.ch/DirectLinks/Home
South America	
Brazilian Headache Society	https://sbcefaleia.com.br/
Latin America	
Mexican Association of Headaches and Migraines	https://amcemig.com/

Search results

Systematic review search results

Table A5 Summary of biomedical bibliographic database search results

Database	Results
OVID—Medline & Embase (combined)	5852
Cochrane Library	1407
EconLit	41
INAHTA Database	9
CEA Registry	3
Total	7,312

Abbreviations

CEA Registry = Cost-Effectiveness Analysis Registry hosted by Tufts Medical Centre, **DARE** = Database of Abstracts of Reviews of Effects, **HTA** = Health Technology Assessment Database, **NHS EED** = National Health Service Economic Evaluation Database, **York CRD** = University of York Centre for Reviews and Dissemination.

Postface: Systematic review search results (updated search)

Database	Results
OVID—Medline & Embase (combined)	924
Cochrane Library—CENTRAL	251
EconLit	0
INAHTA HTA Database	0
CEA Registry	0
Total	1,175

Abbreviations

CEA Registry = Cost-Effectiveness Analysis Registry hosted by Tufts Medical Centre, **DARE** = Database of Abstracts of Reviews of Effects, **HTA** = Health Technology Assessment Database, **NHS EED** = National Health Service Economic Evaluation Database, **York CRD** = University of York Centre for Reviews and Dissemination.

Efficacy, effectiveness, and safety search results

Population	1.	Migraine*.mp	122,926
· · · · · · · · · · · · · · · · · · ·	2.	exp migraine/	101,330
	3.	'episodic migraine'.mp	5,039
	4.	'chronic migraine'.mp	8,825
Comparator	5.	'calcitonin gene related peptide'.mp	36,875
	6.	exp calcitonin gene related peptide/	28,105
	7.	'\$CGRP\$'.mp	25,239
	8.	Erenumab.mp	1,458
	9.	(AMG334 OR AMG 334 OR AMG-334).mp	140
	10.	Fremanezumab.mp	1,094
	11.	(TEV48125 OR TEV 48125 OR TEV-48125).mp	124
	12.	Galcanezumab.mp	1,043
	13.	LY2951742.mp	112
	14.	(Eptinezumab OR eptinezumab-jjmr).mp	468
	15.	ALD403.mp	61
Search string	16.	Or/1-4	122,965
ooulon ou nig	17.	Or/5-15	40,393
	18.	16 and 17	7,468
Search string (10-year filter)	19.	Limit 18 to last 10 years	5,852

 Table A7
 Search strategy – Ovid (Medline and Embase) [09-03-2022]

Population	1.	(Migraine):ti,ab,kw	8,757
	2.	MeSH descriptor: [Migraine Disorders] explode all trees	2,940
	3.	#1 OR #2	8,757
Comparator	4.	(calcitonin gene related peptide):ti,ab,kw	1,227
	5.	(CGRP):ti,ab,kw	992
	6.	MeSH descriptor: [calcitonin gene related peptide] explode all trees	354
	7.	(erenumab):ti,ab,kw	284
	8.	((AMG334):ti,ab,kw OR (AMG 334):ti,ab,kw OR (AMG-334):ti,ab,kw)	69
	9.	(fremanezumab):ti,ab,kw	401
	10.	((TEV48125):ti,ab,kw OR (TEV 48125):ti,ab,kw OR (TEV-48125):ti,ab,kw)	49
	11.	(Galcanezumab):ti,ab,kw	264
	12.	(LY2951742):ti,ab,kw	56
	13.	((Eptinezumab):ti,ab,kw OR (eptinezumab-jjmr):ti,ab,kw)	149
	14.	(ALD403):ti,ab,kw	31
	15.	#4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14	1,970
Search string	16.	#3 AND #15	1,444
Search string (10-year filter)	17.	#17 with Cochrane Library publication date from Mar 2012 to Mar 2022	1,407

Table A8 Search strategy – Cochrane Library [09-03-2022]

Economic search results

Table A9 Search strategy – EconLit [09-03-2022]

Population	1.	Migraine	41
Comparator	2.	Calcitonin gene-related peptide	2
	3.	CGRP	0
	4.	Erenumab	0
	5.	Fremanezumab	0
	6.	Galcanezumab	0
	7.	Eptinezumab	0
Search string	8.	#1 OR #2	41

<u>Abbreviations</u> CGRP = calcitonin gene-related peptide.

Population	1.	Migraine	72
Comparator	2.	Calcitonin gene-related peptide	0
•••••	3.	CGRP	1
	4.	Erenumab	4
	5.	Fremanezumab	3
	6.	Galcanezumab	4
	7.	Eptinezumab	0
Search string	8.	#1 AND #2 OR #3 OR #4 OR #5 OR #6 OR #7	9

 Table A10
 Search strategy – INAHTA HTA Database [09-03-2022]

Abbreviations

CGRP = calcitonin gene-related peptide, **INAHTA** = International Network of Agencies for Health Technology Assessment.

 Table A11
 Search strategy – CEA Registry [09-03-2022]

Population	1.	Migraine	21
Comparator	2.	Calcitonin gene-related peptide	0
	3.	CGRP	0
	4.	Erenumab	3
	5.	Fremanezumab	0
	6.	Galcanezumab	0
	7.	Eptinezumab	0
Search string	8.	#1 AND #4	3

Abbreviations

CGRP = calcitonin gene-related peptide, **CEA Registry** = Cost-Effectiveness Analysis Registry hosted by Tufts Medical Centre.

Clinical trials search results

Database	Search strategy	Results
Clinicaltrials.gov	(CGRP AND Migraine) OR (Calcitonin gene-related peptide AND Migraine) OR Fremanezumab AND Migraine) OR (Galcanezumab AND Migraine) OR (Erenumab AND Migraine) OR (Eptinezumab AND Migraine)	CGRP AND Migraine: 38 Calcitonin gene-related peptide AND Migraine: 36 Fremanezumab AND Migraine: 11 Galcanezumab AND Migraine: 10 Erenumab AND Migraine: 25 Eptinezumab AND Migraine: 8 Sub-total: 103
EU Clinical Trials Registry	(CGRP AND Migraine) OR (Calcitonin gene-related peptide AND Migraine) OR Fremanezumab AND Migraine) OR (Galcanezumab AND Migraine) OR (Erenumab AND Migraine) OR (Eptinezumab AND Migraine)	CGRP AND Migraine: 6 Calcitonin gene-related peptide AND Migraine: 4 Fremanezumab AND Migraine: 6 Galcanezumab AND Migraine: 4 Erenumab AND Migraine: 9 Eptinezumab AND Migraine: 3 Sub-total: 32
	Total	135

Table A12 Clinical trials search strategy [09-03-2022]

<u>Abbreviations</u> CGRP = calcitonin gene-related peptide, EU = European Union.

Postface: Efficacy, effectiveness, and safety search results (updated search)

Population	20.	Migraine*.mp	133059
	21.	exp migraine/	110065
	22.	'episodic migraine'.mp	5661
	23.	'chronic migraine'.mp	9772
Comparator	24.	'calcitonin gene related peptide'.mp	38420
	25.	exp calcitonin gene related peptide/	29112
	26.	'\$CGRP\$'.mp	26601
	27.	Erenumab.mp	1867
	28.	(AMG334 OR AMG 334 OR AMG-334).mp	145
	29.	Fremanezumab.mp	1385
	30.	(TEV48125 OR TEV 48125 OR TEV-48125).mp	125
	31.	Galcanezumab.mp	1361
	32.	LY2951742.mp	116
	33.	(Eptinezumab OR eptinezumab-jjmr).mp	637
	34.	ALD403.mp	64
Search string	35.	Or/1-4	133107
	36.	Or/5-15	42426
	18.	16 and 17	8718
Search string (10 year filter)	19.	Limit 18 to last 10 years	6935
Search update	20.	limit 19 to yr="2022 - 2024"	1358
Deduplicated updated search	21.	remove duplicates from 20	924

 Table A13
 Search strategy for Ovid (Medline and Embase) – 27 January 2023

Abbreviations:

CGRP = calcitonin gene-related peptide.

Notes:

‡ Duplicates removed via Ovid 'deduplicate' function. These duplicates have been captured in the PRISMA flow diagram.

Search string (1 year filter)	34.	#16 with Cochrane Library publication date in The last year	251
Search string	33.	#3 AND #15	1,597
	32.	#4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14	2,165
	31.	(ALD403):ti,ab,kw	35
	30.	((Eptinezumab):ti,ab,kw OR (eptinezumab-jjmr):ti,ab,kw)	189
	29.	(LY2951742):ti,ab,kw	56
	28.	(Galcanezumab):ti,ab,kw	278
	27.	((TEV48125):ti,ab,kw OR (TEV 48125):ti,ab,kw OR (TEV-48125):ti,ab,kw)	49
	26.	(fremanezumab):ti,ab,kw	420
	25.	((AMG334):ti,ab,kw OR (AMG 334):ti,ab,kw OR (AMG-334):ti,ab,kw)	69
	24.	(erenumab):ti,ab,kw	311
	23.	MeSH descriptor: [calcitonin gene related peptide] explode all trees	400
	22.	(CGRP):ti,ab,kw	1,066
Comparator	21.	(calcitonin gene related peptide):ti,ab,kw	1,348
	20.	#1 OR #2	9,199
	19.	MeSH descriptor: [Migraine Disorders] explode all trees	3,387
Population	18.	(Migraine):ti,ab,kw	9,199

Search strategy for Cochrane Library – 9 February 2022 Table A14

Abbreviations: CGRP = calcitonin gene-related peptide.

Population	9.	Migraine	41
Comparator	10.	Calcitonin gene-related peptide	2
	11.	CGRP	0
	12.	Erenumab	0
	13.	Fremanezumab	0
	14.	Galcanezumab	0
	15.	Eptinezumab	0
Search string	16.	#1 AND #2	0
Search string (1 year filter)	17.	#8 publication date in the last year	0

Table A15 Search strategy for EconLit – 9 February 2023

Abbreviations:

CGRP = calcitonin gene-related peptide.

Table A16 Search strategy INAHTA HTA Database – 9 February 2023

Population	9.	Migraine	72
Comparator	10.	Calcitonin gene-related peptide	0
	11.	CGRP	1
	12.	Erenumab	4
	13.	Fremanezumab	3
	14.	Galcanezumab	4
	15.	Eptinezumab	0
Search string	16.	#1 AND #3 OR #4 OR #5 OR #6	9
Search string (1 year filter)	17.	#8 publication date in the last year	0

Abbreviations

CGRP = calcitonin gene-related peptide, INAHTA = International Network of Agencies for Health Technology Assessment.

Table A17 Search strategy for CEA registry – 9 February 2023

Population	9.	Migraine	23
Comparator	10.	Calcitonin gene-related peptide	2
	11.	CGRP	1
	12.	Erenumab	4
	13.	Fremanezumab	0
	14.	Galcanezumab	0
	15.	Eptinezumab	0
Search string	16.	#1 AND #2 OR #3 OR #4	1
Search string (1 year filter)	17.	#8 publication date in the last year	0

Abbreviations:

CGRP = calcitonin gene-related peptide; **CEA registry** = cost-effectiveness analysis Registry hosted by Tufts Medical Centre.

Appendix C: Study inclusion and exclusion criteria

Table A18 Study inclusion and exclusion criteria

Population 1	Patients who suffer from episodic migraine (i.e. characterised by less than 15 headache days per month) ³
	Exclusion criteria: Paediatric patients‡
Population 2	Patients who suffer from chronic migraine (i.e. characterised by 15 or more headache days per month, for 3
	months or more, with at least 8 migraine days per month) ³
	Exclusion criteria: Paediatric patients‡
Intervention(s)	Erenumab (Aimovig®)—70 or 140 mg once monthly
	Fremanezumab (Ajovy®)—225 mg once monthly or 675 mg quarterly
	Galcanezumab (Emgality®)—120 mg once monthly (starting dose of 240 mg)
	Eptinezumab (Vyepti®)—100 mg or 300 mg quarterly
	Exclusion criteria: Other CGRP antagonists (e.g. gepants), combination therapy with more than one
• • • • •	intervention/comparator
Comparator(s)	Placebo
	standard of care for migraine prevention
	• Beta blockers: propranolol, metoprolol
	 Calcium antagonist: flunarizine
	Anticonvulsants: topiramate
	• Antidepressants: amitriptyline
	Other CGRP antagonists (i.e. comparing each of the interventions to each other)
	Exclusion criteria: Other beta blockers, calcium antagonists, anticonvulsants and antidepressants not listed here
a <i>i i i</i>	and/or not reimbursed in Switzerland
Outcome(s)	Clinical outcomes:
	Monthly migraine days (MMDs) and monthly headache days (MHDs)
	Health-related and migraine-specific quality of life (e.g. HIT-6, MSQ v2.1, MIDAS, EQ-5D, SF-36)
	Migraine/headache pain intensity (e.g. VAS, NRS)
	• Number of days per month with a migraine that needs to be treated with acute pain relievers (i.e. MMDs with
	acute medication use)
	• Response rate (defined as a reduction of the average number of days with migraines of at least 50% after 6
	months of treatment compared to prior to the treatment beginning)
	Treatment adherence
	Mortality
	Treatment-related adverse events (AEs)
	Serious adverse events (SAEs)
	Adverse events leading to discontinuation
	Adverse events upon discontinuation of CGRP antagonists (e.g. rebound effect)
	Health-economic outcomes:
	Costs, utilities, ICER and budget impact
Design	Studies will be selected based on the following hierarchy of study design, with preference given for the
	highest level of evidence.
	Effectiveness and safety outcomes:
	RCTs > non-randomised comparative studies > single-arm studies reporting pre- and post-treatment results
	Note: Inclusion of studies with ≥50 participants (all study designs)
	Health-economics outcomes:
	RCTs > non-randomised comparative studies > single-arm studies reporting pre- and post-treatment results
	Note: Inclusion of studies with ≥50 participants (all study designs)
	Exclusion criteria: case reports, conference abstracts, letter to the editors, expert opinions, editorials, review
	articles, non-human/laboratory studies, studies with <50 participants
Country	No restriction
Year	RCTs: 10-year limit
	Non-RCTs: 5-year limit
Language	English, French, German and Italian

Abbreviations

AEs = adverse events, **CGRP** = calcitonin gene-related peptide, **EQ-5D** = EuroQol 5-dimension questionnaire, **HIT-6** = Headache Impact Test, **ICER** = incremental cost-effectiveness ratio, **MHDs** = monthly headache days, **MIDAS** = Migraine Disability Assessment Scale, **MMDs** = monthly migraine days, **MSQ** = Migraine-Specific Quality of Life questionnaire, **NRS** = numerical rating scale, **RCT** = randomised control trial, **SAEs** = serious adverse events, **SF-36** = 36-Item Short Form Health Survey, **UK** = United Kingdom, **USA** = United States of America, **VAS** = visual analogue scale, **WHO** = World Health Organisation.

Notes

‡ As per expert advice, CGRP antagonists are not authorised for use in paediatric patients.⁴

Appendix D: List of excluded publications at full text

Incorrect population (k=6)

1. Winner PK, McAllister P, Chakhava G, et al Effects of Intravenous Eptinezumab vs Placebo on Headache Pain and Most Bothersome Symptom When Initiated During a Migraine Attack: a Randomized Clinical Trial. JAMA 2021;325(23):2348-56.

2. Robblee J, Devick KL, Mendez N, et al Real-World Patient Experience With Erenumab for the Preventive Treatment of Migraine. Headache 2020;60:2014-25.

3. de Hoon J, Van Hecken A, ermeulen C, et al Phase I, Randomized, Double-blind, Placebo-controlled, Single-dose, and Multiple-dose Studies of Erenumab in Healthy Subjects and Patients With Migraine. Clinical pharmacology and therapeutics 2018;103(5):815-25.

4. De Icco R, Fiamingo G, Greco R, et al Neurophysiological and biomolecular effects of erenumab in chronic migraine: An open label study. Cephalalgia;40:1336-45.

5. Ashina H, Iljazi A, Al-Khazali HM, et al Efficacy, tolerability, and safety of erenumab for the preventive treatment of persistent post-traumatic headache attributed to mild traumatic brain injury: An open-label study. Journal of Headache and Pain;21

6. Alex A, Vaughn C, Rayhill M. Safety and Tolerability of 3 CGRP Monoclonal Antibodies in Practice: A Retrospective Cohort Study. Headache 2020;60:2454-62.

Incorrect intervention (k=13)

1. Dodick DW, Goadsby PJ, Silberstein SD, et al Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, doubleblind, placebo-controlled, exploratory phase 2 trial. *The lancet Neurology* 2014;13(11):1100-07.

2. Vo P, Wen S, Martel MJ, et al Benefit-risk assessment of erenumab and current migraine prophylactic treatments using the likelihood of being helped or harmed. *Cephalalgia* 2018;39:608-16.

3. Slof J. Cost-Effectiveness Analysis of Early versus Non-early Intervention in Acute Migraine Based on Evidence from the 'Act When Mild' Study. *Applied Health Economics and Health Policy* 2012;10(3):201-15.

4. Pak K, Kim J, Lee GH, et al Effectiveness of Calcitonin Gene-Related Peptide Receptor Antagonists for Migraine Treatment: A Meta-Analysis. *European Neurology* 2022

5. Hong P, Liu Y. Calcitonin gene-related peptide antagonism for acute treatment of migraine: a metaanalysis. *The International journal of neuroscience* 2017;127:20-27.

6. Gantenbein AR, Agosti R, Gobbi C, et al Impact on monthly migraine days of discontinuing anti-CGRP antibodies after one year of treatment - a real-life cohort study. *Cephalalgia* 2021;41:1181-86.

7. Forbes RB, McCarron M, Cardwell CR. Efficacy and Contextual (Placebo) Effects of CGRP Antibodies for Migraine: Systematic Review and Meta-analysis. *Headache* 2020;60:1542-57.

8. Drellia K, Kokoti L, Deligianni CI, et al Anti-CGRP monoclonal antibodies for migraine prevention: A systematic review and likelihood to help or harm analysis. *Cephalalgia* 2021;41:851-64.

9. Citrome L, Sánchez Del Rio M, Dong Y, et al Benefit-Risk Assessment of Galcanezumab Versus Placebo for the Treatment of Episodic and Chronic Migraine Using the Metrics of Number Needed to Treat and Number Needed to Harm. *Advances in therapy* 2021;38(8):4442-60.

10. Caronna E, Jose Gallardo V, Alpuente A, et al Safety of anti-CGRP monoclonal antibodies in patients with migraine during the COVID-19 pandemic: Present and future implications. *Neurologia* 2021;36:611-17.

11. Breen ID, Brumfiel CM, Patel MH, et al Evaluation of the Safety of Calcitonin Gene-Related Peptide Antagonists for Migraine Treatment among Adults with Raynaud Phenomenon. *JAMA Network Open* 2021

12. Altamura C, Cevoli S, Aurilia C, et al Locking down the CGRP pathway during the COVID-19 pandemic lockdown: the PandeMig study. *Neurological Sciences* 2020;41:3385-89.

13. Agboola F, Atlas SJ, Touchette DR, et al The effectiveness and value of novel acute treatments for migraine. *Journal of Managed Care & Specialty Pharmacy* 2020;26(11):1456-62.

Incorrect comparator (k=4)

1. Goadsby PJ, Silberstein SD, Yeung PP, et al Long-term safety, tolerability, and efficacy of fremanezumab in migraine: a randomized study. *Neurology* 2020;95(18):e2487-e99.

2. Kudrow D, Cady RK, Allan B, et al Long-term safety and tolerability of eptinezumab in patients with chronic migraine: a 2-year, open-label, phase 3 trial. *BMC neurology* 2021;21(1):12.

3. Siddiqui M, Shah PV, Balani P, et al Comparing the Efficacy, Safety, and Superiority of Calcitonin Gene-Related Peptide Monoclonal Antibodies and Botox in Preventing and Treating Migraines. *Cureus* 2021;13(1):e13002.

4. Popoff E, Johnston K, Croop R, et al Matching-adjusted indirect comparisons of oral rimegepant versus placebo, erenumab, and galcanezumab examining monthly migraine days and health-related quality of life in the treatment of migraine. *Headache* 2021

Incorrect outcome (k=7)

1. VanderPluym J, Dodick DW, Lipton RB, et al Fremanezumab for preventive treatment of migraine: functional status on headache-free days. *Neurology* 2018;91(12):E1152-E65.

2. Stauffer VL, Sides R, Lanteri-Minet M, et al Comparison between prefilled syringe and autoinjector devices on patient-reported experiences and pharmacokinetics in galcanezumab studies. *Patient Preference and Adherence* 2018;12:1785-95.

3. Spierings ELH, Kärppä M, Ning X, et al Efficacy and safety of fremanezumab in patients with migraine and inadequate response to prior preventive treatment: subgroup analyses by country of a randomized, placebo-controlled trial. *Journal of headache and pain* 2021;22(1):1-12.

4. Hirata K, Takeshima T, Sakai F, et al Early onset of efficacy with erenumab for migraine prevention in Japanese patients: Analysis of two randomized, double-blind, placebo-controlled studies. *Brain and Behavior* 2022

5. Hansen JM, Ashina M. Calcitonin gene-related peptide and migraine with aura: A systematic review. *Cephalalgia* 2014;34:695-707.

6. Fiedler-Kelly J, Passarell J, Ludwig E, et al Effect of Fremanezumab Monthly and Quarterly Doses on Efficacy Responses. *Headache* 2020;60(7):1376-91.

7. Ailani J, Winner P, Hartry A, et al Patient preference for early onset of efficacy of preventive migraine treatments. *Headache* 2022;20

Incorrect publication type (k=184)

1. Desch M. CGRP- and CGRP-receptor antagonists for prophylaxis of migraine. [German]. *Medizinische Monatsschrift fur Pharmazeuten*;42:4-16.

2. Allan B, Khan A, Song Y, et al Prevail: An open-label phase 3 trial to evaluate the safety of eptinezumab administered intravenously in patients with chronic migraine. *Headache*;59:105.

3. Ford JH, David AW, Nyhuis AW, et al Measures of functioning using MSQ v2.1 in patients with a history of episodic migraine and treated with galcanezumab or placebo injections in a phase 2 clinical trial. *Headache* 2017;57:182-.

4. Ailani J, Andrews JS, Tockhorn-Heidenreich A, et al Total pain burden in patients with treatmentresistant migraine: effects of galcanezumab in the conquer phase 3b trial. *Annals of Neurology*;90:S137.

5. Ahl J, Aurora S, Ford J, et al Predictor of significant reduction in migraine headache days and correlation with improvement in quality of life with galcanezumab. *Journal of the Neurological Sciences*;381:427.

6. Nagaraj K, enbussche N, Goadsby PJ. Role of Monoclonal Antibodies against Calcitonin Gene-Related Peptide (CGRP) in Episodic Migraine Prevention: Where Do We Stand Today? *Neurology India*;69:S59-S66.

7. Anonymous. Canadian Agency for Drugs and Technologies in Health CADTH Common Drug Reviews 2020;9:09.

8. Ahmed Z, Hogue O, Lee M, et al Calcitonin gene related peptide monoclonal antibodies in the treatment of migraine: Is there a difference in efficacy between inhibitors of the ligand compared to inhibitors of the receptor? *Headache*;60:6.

9. Anonymous. Fremanezumab for migraine prevention: more effective, less costly. *PharmacoEconomics & Outcomes News Weekly* 2020;854(1):22.

10. Anonymous. Galcanezumab for migraine. Australian Prescriber 2020;43(4):135-36.

11. Anonymous. Erenumab (AIMOVIGdegree) for the prevention of migraine attacks. *Prescrire International* 2019;28:201-05.

12. Anonymous. Erenumab for migraine. Australian Prescriber 2018;41(6):201-02.

13. Anonymous. Migraine Headache Agents. *National Institute of Diabetes and Digestive and Kidney Diseases* 2012

14. Anonymous. Erenumab. National Institute of Diabetes and Digestive and Kidney Diseases 2012

15. Anonymous. Galcanezumab. National Institute of Diabetes and Digestive and Kidney Diseases 2012

16. Anonymous. Fremanezumab. National Institute of Diabetes and Digestive and Kidney Diseases 2012

17. Anonymous. Eptinezumab. National Institute of Diabetes and Digestive and Kidney Diseases 2012

18. Anonymous. Galcanezumab: Approved indication: Migraine emgality (Eli Lilly) prefilled pen, prefilled syringe containing 120 mg/mL. *Australian Prescriber*,43:135-36.

19. Anonymous. Three new drugs for the prevention of migraine. *Drug and Therapeutics Bulletin*;58:151-56.

20. Anonymous. Fremanezumab. Australian Prescriber; 43:68-69.

21. Dodick D, Ashina M, Kudrow D, et al A phase 3, randomised, double-blind, placebocontrolled study to evaluate the efficacy and safety of erenumab in migraine prevention: Primary results of the arise trial. *Journal of Neurology, Neurosurgery and Psychiatry*;88:e24.

22. Ashina M, Dodick D, Kudrow D, et al A phase 3, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of erenumab in migraine prevention: Primary results of the ARISE trial. *European Journal of Neurology*;24:470.

23. Arzt ME, Meyer I, Koblbauer C, et al The SQUARE study design: A multi-centric, non-interventional study to evaluate the impact of erenumab on quality of life in a real-world population with migraine. *Cephalalgia*;39:273.

24. Anonymous. Reducing the number of migraine days: Prevention with CGRP antagonists and CGRP antibodies. [German]. *Deutsche Apotheker Zeitung* 2019;159

25. Anonymous. Out of the migraine vicious cycle: What calcitonin gene-related peptide (CGRP) antibodies can provide. [German]. *Deutsche Apotheker Zeitung* 2021;161

26. Anonymous. Fremanezumab for migraine. Australian Prescriber 2020;43(2):68-69.

27. Anonymous. Finding promising cures for migraine: targeting neuropeptides. EBioMedicine;63

28. Ziegeler C, May A. Non-Responders to Treatment With Antibodies to the CGRP-Receptor May Profit From a Switch of Antibody Class. *Headache*;60:469-70.

29. Stuckey R. Pre-filled Pen for Anti-calcitonin Gene-related Peptide Migraine Therapy. *European Neurological Review* 2020;15:11-12.

30. Yang CP, Zeng BY, Chang CM, et al Correction to: Comparative Effectiveness and Tolerability of the Pharmacology of Monoclonal Antibodies Targeting the Calcitonin Gene-Related Peptide and Its Receptor for the Prevention of Chronic Migraine: a Network Meta-analysis of Randomized Controlled Trials (Neurotherapeutics, (2021), 18, 4, (2639-2650), 10.1007/s13311-021-01128-0). *Neurotherapeutics*;18:2755.

31. Tepper SJ, Ailani J, Ford JH, et al Correction to: Effects of Galcanezumab on Health-Related Quality of Life and Disability in Patients with Previous Failure of 2-4 Migraine Preventive Medication Categories: Results from a Phase IIIb Randomized, Placebo-Controlled, Multicenter Clinical Trial (CONQUER). *Clinical Drug Investigation* 2022;7:07.

32. Smith TR, Spierings ELH, Cady R, et al Correction to: Safety and tolerability of eptinezumab in patients with migraine: a pooled analysis of 5 clinical trials (The Journal of Headache and Pain, (2021), 22, 1, (16), 10.1186/s10194-021-01227-5). *Journal of Headache and Pain*;22

33. Smith TR, Janelidze M, Chakhava G, et al Corrigendum: "Eptinezumab for the Prevention of Episodic Migraine: sustained Effect Through 1 Year of Treatment in the PROMISE-1 Study" (Clinical Therapeutics (2020) 42(12) (2254–2265.e3), (S0149291820305178), (10.1016/j.clinthera.2020.11.007)). *Clinical therapeutics* 2021

34. Frontiers Production O. Erratum: Assessment of the Effect of Erenumab on Efficacy and Quality-of-Life Parameters in a Cohort of Migraine Patients With Treatment Failure in Cyprus. *Frontiers in neurology* [electronic resource] 2021;12:793620.

35. Erratum: Assessment of the Effect of Erenumab on Efficacy and Quality-of-Life Parameters in a Cohort of Migraine Patients With Treatment Failure in Cyprus (Front. Neurol., (2021), 12, (687697), 10.3389/fneur.2021.687697). *Frontiers in Neurology*;12

36. Zhao X, Xu X, Li Q. Correction to: Efficacy and safety of galcanezumab for preventive treatment of migraine: a systematic review and meta-analysis (Journal of Neurology, (2021), 268, 7, (2364-2376), 10.1007/s00415-020-09707-5). *Journal of Neurology*;268:2377-78.

37. Stauffer VL, Dodick DW, Zhang Q, et al Erratum: evaluation of galcanezumab for the prevention of episodic migraine: the EVOLVE-1 randomized clinical trial (JAMA Neurology (2018) 75: 9 (1080-1088) DOI: 10.1001/jamaneurol.2018.1212). *JAMA neurology* 2019;76(7):872-.

38. Stauffer VL, Dodick DW, Zhang Q, et al Erratum: evaluation of galcanezumab for the prevention of episodic migraine: the EVOLVE-1 randomized clinical trial (JAMA Neurology (2018) DOI: 10.1001/jamaneurol.2018.1212). *JAMA neurology* 2018;75(9):1156.

39. Smith TR, Janelidze M, Chakhava G, et al Corrigendum to "Eptinezumab for the Prevention of Episodic Migraine: Sustained Effect Through 1 Year of Treatment in the PROMISE-1 Study" [Clin Therapeut 42 (12) (2020) 2254-2265] (Clinical Therapeutics (2020) 42(12) (2254-2265.e3), (S0149291820305178), (10.1016/j.clinthera.2020.11.007)). *Clinical Therapeutics*;43:791.

40. Silberstein SD, Stauffer VL, Day KA, et al Correction: Galcanezumab in episodic migraine: Subgroup analyses of efficacy by high versus low frequency of migraine headaches in phase 3 studies (EVOLVE-1 & EVOLVE-2) (Journal of Headache and Pain (2019) 20 (75) DOI: 10.1186/s10194-019-1024-x). *Journal of Headache and Pain*;20 41. Scott LJ. Correction to: Galcanezumab: A Review in the Prevention of Migraine and Treatment of Episodic Cluster Headache (Drugs, (2020), 80, 9, (893-904), 10.1007/s40265-020-01329-5). *Drugs*;80:1379.

42. Ren Z, Zhang H, Wang R, et al Erratum to "The treatment efficacy of galcanezumab for migraine: A meta-analysis of randomized controlled trials" [Clin. Neurol. Neurosurg. 186 (2019) 105428]. *Clinical Neurology & Neurosurgery* 2020;189:105671.

43. Ren Z, Zhang H, Wang R, et al Erratum to "The treatment efficacy of galcanezumab for migraine: A meta-analysis of randomized controlled trials" [Clin. Neurol. Neurosurg. 186 (2019) 105428](S0303846719302240)(10.1016/j.clineuro.2019.105428). *Clinical Neurology and Neurosurgery*;189

44. Ford JH, Stauffer VL, McAllister P, et al Correction to: Functional impairment and disability among patients with migraine: evaluation of galcanezumab in a long-term, open-label study (Quality of Life Research, (2021), 30, 2, (455-464), 10.1007/s11136-020-02632-0). *Quality of Life Research*;30:465-66.

45. Bottiroli S, De Icco R, Vaghi G, et al Correction to: Psychological predictors of negative treatment outcome with Erenumab in chronic migraine: data from an open label long-term prospective study (The Journal of Headache and Pain, (2021), 22, 1, (114), 10.1186/s10194-021-01333-4). *Journal of Headache and Pain*;22

46. Bangs ME, Kudrow D, Wang S, et al Correction to: Safety and tolerability of monthly galcanezumab injections in patients with migraine: integrated results from migraine clinical studies. *BMC Neurology* 2020;20(1):90.

47. Bangs ME, Kudrow D, Wang S, et al Erratum: Safety and tolerability of monthly galcanezumab injections in patients with migraine: Integrated results from migraine clinical studies (BMC Neurol. (2020) 20 (25) DOI: 10.1186/s12883-020-1609-7). *BMC Neurology*;20

48. Anonymous. CORRIGENDUM to 'Anti-CGRP monoclonal antibodies for migraine prevention: A systematic review and likelihood to help or harm analysis'. *Cephalalgia* 2022;42(1):90.

49. Anonymous. Department of Error: Fremanezumab versus placebo for migraine prevention in patients with documented failure to up to four migraine preventive medication classes (FOCUS): a randomised, double-blind, placebo-controlled, phase 3b trial (The Lancet (2019) 394(10203) (1030-1040), (S0140673619319464), (10.1016/S0140-6736(19)31946-4)). *The Lancet* 2020

50. Anonymous. Corrigendum: CGRP ligand and receptor monoclonal antibodies for migraine prevention: Evidence review and clinical implications. *Cephalalgia* 2019;39(8):1069.

51. Anonymous. Erratum: Calcitonin gene-related peptide receptor as a novel target for the management of people with episodic migraine: current evidence and safety profile of erenumab [Corrigendum]. *Journal of pain research* 2018;11:213.

52. Anonymous. Corrigendum: Calcitonin gene-related peptide receptor as a novel target for the management of people with episodic migraine: Current evidence and safety profile of erenumab (J pain res. (2017) 10 (2751-2760) 10.2147/JPR.S128143). *Journal of Pain Research* 2018;11:213.

53. Anonymous. Erratum to: Efficacy of Galcanezumab for Migraine Prevention in Patients With a Medical History of Anxiety and/or Depression: A Post Hoc Analysis of the Phase 3, Randomized, Double-Blind, Placebo-Controlled REGAIN, and Pooled EVOLVE-1 and EVOLVE-2 Studies (Headache: The Journal of Head and Face Pain, (2020), 60, 10, (2202-2219), 10.1111/head.13970). *Headache*;62:114-16.

54. Anonymous. Erratum to: Migraine Headache Day Response Rates and the Implications to Patient Functioning: An Evaluation of 3 Randomized Phase 3 Clinical Trials of Galcanezumab in Patients With Migraine (Headache: The Journal of Head and Face Pain, (2020), 60, 10, (2304-2319), 10.1111/head.14013). *Headache*;61:977.

55. Anonymous. Erratum: Potential for treatment benefit of small molecule CGRP receptor antagonist plus monoclonal antibody in migraine therapy (Neurology (2020)). *Neurology*;94:900.

56. Anonymous. Erratum: Vascular safety of erenumab for migraine prevention (Neurology (2020) 94 5 (e497-e510)). *Neurology*;94:1052.

57. Anonymous. Corrigendum to: CGRP ligand and receptor monoclonal antibodies for migraine prevention: Evidence review and clinical implications (Cephalalgia, (2019), 39, 3, (445-458), 10.1177/0333102418821662). *Cephalalgia*;39:1069.

58. Anonymous. Erratum to: Calcitonin Gene-Related Protein (CGRP)-Targeted Treatments for Migraine Prevention: XXXX (Headache: The Journal of Head and Face Pain, (2019), 59, 3, (477-480), 10.1111/head.13492). *Headache*;59:1128.

59. Anonymous. Erratum to: 100% Response Rate to Galcanezumab in Patients With Episodic Migraine: A Post Hoc Analysis of the Results From Phase 3, Randomized, Double-Blind, Placebo-Controlled EVOLVE-1 and EVOLVE-2 Studies: Headache (Headache: The Journal of Head and Face Pain, (2018), 58, 9, (1347-1357), 10.1111/head.13427). *Headache*;59:1428.

60. Anonymous. Correction: Effect of different doses of galcanezumab vs placebo for episodic migraine prevention: A randomized clinical trial (JAMA Neurology (2017) DOI: 10.1001/jamaneurol.2017.3859). *JAMA Neurology*;75:260.

61. Ament M, Day K, Stauffer VL, et al Correction to: Effect of galcanezumab on severity and symptoms of migraine in phase 3 trials in patients with episodic or chronic migraine (The Journal of Headache and Pain, (2021), 22, 1, (6), 10.1186/s10194-021-01215-9). *Journal of Headache and Pain*;22

62. Erratum to: efficacy of Galcanezumab for Migraine Prevention in Patients With a Medical History of Anxiety and/or Depression: a Post Hoc Analysis of the Phase 3, Randomized, Double-Blind, Placebo-Controlled REGAIN, and Pooled EVOLVE-1 and EVOLVE-2 Studies (Headache: the Journal of Head and Face Pain, (2020), 60, 10, (2202-2219), 10.1111/head.13970). *Headache* 2021

63. Erratum to: migraine Headache Day Response Rates and the Implications to Patient Functioning: an Evaluation of 3 Randomized Phase 3 Clinical Trials of Galcanezumab in Patients With Migraine (Headache: the Journal of Head and Face Pain, (2020), 60, 10, (2304-2319), 10.1111/head.14013). *Headache* 2021

64. Department of Error: fremanezumab versus placebo for migraine prevention in patients with documented failure to up to four migraine preventive medication classes (FOCUS): a randomised, double-blind, placebo-controlled, phase 3b trial (The Lancet (2019) 394(10203) (1030–1040), (S0140673619319464), (10.1016/S0140-6736(19)31946-4)). *Lancet* 2020

65. Erratum to: 100% Response Rate to Galcanezumab in Patients With Episodic Migraine: a Post Hoc Analysis of the Results From Phase 3, Randomized, Double-Blind, Placebo-Controlled EVOLVE-1 and EVOLVE-2 Studies: headache (Headache: the Journal of Head and Face Pain, (2018), 58, 9, (1347-1357), 10.1111/head.13427). *Headache* 2019

66. Tepper SJ, Dolezil D, Ashina M, et al A phase 2 randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of erenumab (AMG 334) in chronic migraine prevention. *Headache* 2017;57:130-.

67. Tepper SJ, Diener H, Ashina M, et al Efficacy of erenumab for the treatment of patients with chronic migraine in presence of medication overuse. *Headache* 2017;57:197-.

68. Tepper S, Widnell K, Dolezil D, et al Phase 2, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of erenumab (AMG 334) in chronic migraine prevention. *Cephalalgia* 2016;36:44-45.

69. Tepper S, Reuter U, McAllister P, et al Early onset of efficacy in a phase 2 clinical trial of erenumab in patients with chronic migraine. *Schmerz (Berlin, Germany)* 2017(2):S65.

70. Sun H, Dodick DW, Goadsby P, et al Results of the open-label extension of a phase 2, randomized, double-blind, placebo-controlled, study to evaluate the efficacy and safety of AMG 334 for the prevention of episodic migraine. *Headache*;5:256-57.

71. Sun H, Dodick D, Goadsby PJ, et al Randomised, double-blind, phase-2 study and 52-Week interim results of an openlabel extension to evaluate AMG334 for the prevention of episodic migraine. *European Journal of Neurology*;2:81.

72. Yeung P, Aycardi E, Bigal M, et al Early onset of action with fremanezumab versus placebo for the preventive treatment of episodic migraine. *Journal of headache and pain* 2017;18(1)

73. Winner P, Reuter U, Dodick D, et al Safety of Erenumab among Patients with Migraine using Triptans or with Cardiovascular Risk Factors. *European journal of neurology* 2018:408.

74. Vander Pluym J, Bigal M, Dodick DW. Effect of monoclonal calcitonin gene-related peptide antibody (TEV-48125) on wellness during headache free days. *Headache*;1:7.

75. Tepper S, Lipton R, Reuter U, et al Patient-reported outcomes in chronic migraine patients receiving placebo or erenumab (AMG 334) in a phase 2, randomized, double-blind study. *Cephalalgia* 2016;36:45-46.

76. Stauffer VL, Wang S, Bangs M, et al Phase-3 safety data from studies comparing galcanezumab and placebo in patients with episodic and chronic migraine. *European journal of neurology* 2018:298.

77. Stauffer V, Skljarevski V, Zhang Q, et al The relationship between headache frequency and illness burden prior to treatment randomization in two phase 3 episodic migraine clinical trials. *Headache* 2017;57:190-.

78. Smith J, Dodick DW, Goadsby PJ, et al ALD403 (eptinezumab) elicits meaningful reductions in migraine activity 24 hours after a single intravenous administration. *Headache* 2017;57:179-80.

79. Smith J, Dodick DW, Goadsby PJ, et al Randomized, double-blind, placebo-controlled trial of ALD403 (eptinezumab), an anti-CGRP monoclonal antibody for the prevention of chronic migraine. *Headache* 2017;57:130-.

80. Smith J, Dodick D, Goadsby P, et al Proof of concept clinical trial of ALD403, an anti-calcitonin gene-related peptide (CGRP) antibody in the prevention of migraine-6 month data. *Cephalalgia*;1:4-5.

81. Smith J, Dodick D, Goadsby P, et al Randomized, double-blind, placebocontrolled trial of ALD403, an antiCGRP peptide antibody in the prevention of chronic migraine. *Cephalalgia* 2016;36:43-.

82. Skljarevski V, Stauffer VL, Zhang Q, et al Phase 3 studies (EVOLVE-1 and EVOLVE-2) of galcanezumab in episodic migraine: results of 6-month treatment phase. *Journal of headache and pain* 2017;18(1)

83. Skljarevski V, Oakes T, Ferguson M, et al Efficacy and safety of LY2951742 in a randomized, double-blind, placebocontrolled, dose-ranging study in patients with migraine. *Cephalalgia* 2016;36:42-

84. Skljarevski V, Martinez J, Oakes T, et al Efficacy of LY2951742 in subgroups of patients with migraine of different frequency. *Postgraduate medicine* 2016;128:104-.

85. Skljarevski V, Martinez J, Oakes T, et al Efficacy of LY2951742 in subgroups of patients with migraine of different frequency. *Cephalalgia* 2016;36:42-43.

86. Reuter U, Tepper S, McAllister P, et al Early onset of efficacy in a phase 2 clinical trial of erenumab in patients with chronic migraine. *Cephalalgia* 2017(1):35-36.

87. Reuter U, Ehrlich M, Gendolla A, et al Erenumab versus topiramate for the prevention of migraine: results of a randomized active-controlled double-dummy trial. *Headache* 2021;61:174-75.

88. Reuter U, Br, es J, et al Efficacy of erenumab (AMG 334) in patients with chronic migraine in North America and Europe: subgroup analysis of a phase 2, randomised, double-blind, placebo-controlled study. *European journal of neurology* 2017;24:548-.

89. Reuter U, Bonner J, Broessner G, et al Use of acute headache and migraine medications in patients with episodic migrainein the STRIVE Phase 3 trial of erenumab for migraine prevention. *Journal of headache and pain* 2017(1)

90. Popoff E, Johnston KM, Harris L, et al Matching-adjusted indirect comparisons of intermittent oral rimegepant vs placebo and injectable anti-CGRP monoclonal antibodies (Mab) examining health-related quality of life (HRQOL). *Headache* 2020;60:73-.

91. Pascual J, Dolezil D, Davies B, et al Analysis of injection site reactions across four placebo controlled trials of erenumab for migraine prevention. *Neurology* 2018(15)

92. Pascual J, Buse DC, Starling AJ, et al Effect of erenumab on patient-reported outcomes in episodic migraine patients with prior prophylactic treatment failure: results from a post-hoc analysis of the strive study. *Headache* 2018:179-80.

93. Oakes T, Zhang Q, Ferguson M, et al Efficacy and safety of LY2951742 in a randomized, doubleblind, placebo-controlled, dose-ranging study in patients with migraine. *Postgraduate Medicine* 2016;128:103-04.

94. Nichols R, Ruff D, Pearlman E, et al Analysis of initial non-responders to galcanezumab in patients with episodic or chronic migraine: results from the EVOLVE-1, EVOLVE-2, and regain randomized, double-blind, placebo-controlled trials. *Headache* 2018:173-74.

95. Lipton RB, Tepper S, Reuter U, et al Patient-reported outcomes in patients with chronic migraine receiving placebo or erenumab (AMG 334) in a phase 2, randomized, double-blind study. *Headache* 2017;57:198-.

96. Lipton RB, hi SK, Fitzgerald T, et al The positive impact of fremanezumab on work productivity and activity impairment in patients with chronic migraine. *Journal of Headache and Pain Conference: 11th European Headache Federation Congress Jointly with 31st Congress of the Italian Society for the Study of Headaches Rome Italy* 2017;18(1)

97. Lipton RB, hi SK, Fitzgerald T, et al The impact of fremanezumab on migraine-specific health-related quality of life in episodic migraine. *Journal of headache and pain* 2017;18(1)

98. Lipton RB, Dodick DW, Goadsby PJ, et al Responders to ALD403 (eptinezumab) show significant reduction in headache impact at weeks 4 through 12 following a single infusion in chronic migraine. *Headache* 2017

99. Lipton RB, Brennan A, Palmer S, et al Novel biologics versus conventional preventive therapies in migraine: A framework for economic evaluation. *Value in Health*;20:A732.

100. Lenz R, Silberstein S, Dodick D, et al Results of a randomized, double-blind, placebocontrolled, phase 2 study to evaluate the efficacy and safety of AMG 334 for the prevention of episodic migraine. *Cephalalgia* 2015;35(6):5.

101. Iyengar S, Dodick DW, Goadsby PJ, et al Evaluation of efficacy and safety of LY2951742 in randomized, double-blind, placebo-controlled, singledose and dose-ranging studies in patients with migraine. *Neuropsychopharmacology* 2016;41:S381-S82.

102. Halker R, Aycardi E, Bigal M, et al Sustained migraine and headache day improvement with fremanezumab (TEV-48125). *Headache* 2017;57:185-86.

103. Goadsby PJ, Reuter U, Bonner J, et al Phase 3, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of erenumab (AMG 334) in migraine prevention: primary results of the STRIVE trial. *Headache* 2017;57:128-29.

104. Goadsby PJ, Reuter U, Bonner J, et al Phase 3, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of erenumab (AMG 334) in migraine prevention: primary results of the STRIVE Trial. *European journal of neurology* 2017;24:117-.

105. Goadsby PJ, Reuter U, Bonner J, et al Phase 3, randomised, double-blind, placebocontrolled study to evaluate the efficacy and safety of erenumab (AMG 334) in migraine prevention: Primary results of the strive trial. *Journal of Neurology, Neurosurgery and Psychiatry*;88:e23-e24.

106. Goadsby PJ, Jann AE, Cohen JM, et al Long-term efficacy of fremanezumab in patients with chronic migraine with concomitant preventive medication use. *Headache* 2019;59:117-18.

107. Goadsby PJ, Dodick D, Silberstein S, et al Randomized, double-blind, placebo-controlled trial of ALD403, an anti-CGRP peptide antibody in the prevention of frequent episodic migraine. *Headache*;54:1420.

108. Goadsby PJ, Dodick D, Martinez J, et al Onset of efficacy of LY2951742 in migraine prevention: post-hoc analysis of phase 2a, randomized, double-blind, placebo-controlled study data of a calcitonin gene-related peptide monoclonal antibody. *Cephalalgia* 2015;35(6):55.

109. Goadsby P, Dodick D, Silberstein S, et al Randomized, double-blind, placebo-controlled trial of ALD403, an anti-CGRP peptide antibody in the prevention of frequent episodic migraine. *Neurology* 2014;83(2):e40.

110. Goadsby P, Dodick D, Martinez J, et al Onset of efficacy of LY2951742 in migraine prevention: Data from a phase IIa, randomized, double-blind, placebo-controlled study of a monoclonal antibody to calcitonin gene-related peptide (a post-hoc analysis). *Postgraduate Medicine* 2016;128:83-84.

111. Foster SA, Milev S, Hoog M, et al Pnd40 Budget Impact Analysis of Galcanezumab-Gnlm for the Preventive Treatment of Patients with Chronic and Episodic Migraine in the United States. *Value in Health*;22:S277.

112. Ford JH, Tockhorn-Heidenreich A, Nichols RM, et al Annual indirect cost savings in patients with episodic or chronic migraine: post-hoc analyses from multiple galcanezumab clinical trials. *Headache* 2021;61:54-55.

113. Fern, es MS, Detke HC, et al Effect of galcanezumab on possible menstrual-related migraine: exploratory analyses results from EVOLVE-1, EVOLVE-2 and REGAIN. *Journal of headache and pain* 2018

114. Fern, es MFS, Detke HC, et al Effect of galcanezumab on possible menstrual-related migraine: exploratory analyses results from evolve-1, evolve-2 and regain. *Cephalalgia* 2018:97-98.

115. Earley A, Desai P, Bergrath E, et al Systematic literature review of patient reported outcomes in studies examining prophylactic treatments in patients with episodic or chronic migraine. *Cephalalgia*;36:36.

116. Dodick DW, Goadsby PJ, Skljarevski V, et al Sustained response outcomes from a phase 2a, randomized, double-blind, placebo-controlled study of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a post-hoc analysis. *Cephalalgia* 2015;35(6):52.

117. Dodick DW, Ashina M, Kudrow D, et al A phase 3, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of erenumab in migraine prevention: Primary results of the ARISE trial. *Headache*;57:191-92.

118. Dodick D, Goadsby PJ, Spierings EL, et al CGRP monoclonal antibody LY2951742 for the prevention of migraine: A phase 2, randomized, double-blind, placebo-controlled study. *Headache*;54:1430.

119. Dodick D, Goadsby P, Spierings E, et al CGRP monoclonal antibody LY2951742 for the prevention of migraine: A Phase 2, Randomized, double-blind, placebo-controlled study. *Neurology*;83:e39-e40.

120. Dodick D, Goadsby P, Skjlarevski V, et al Sustained response outcomes from a phase iia, randomized, double-blind, placebo-controlled study of ly2951742, a monoclonal antibody to calcitonin gene-related peptide for the prevention of migraine: A post-hoc analysis. *Postgraduate Medicine* 2016;128:23-24.

121. Dodick D, Goadsby P, Skjlarevski V, et al Sustained response outcomes from a phase iia, randomized, double-blind, placebo-controlled study of ly2951742, a monoclonal antibody to calcitonin gene-related peptide for the prevention of migraine: a post-hoc analysis. *Postgraduate medicine* 2016;128:23-24.

122. Diener HC, Cohen JM, Galic M, et al Consecutive Migraine-free Days with Fremanezumab Treatment: results of the Double-blind, Placebo-controlled FOCUS Study. *Cephalalgia* 2021;41(1):78-78.

123. Diener HC, Ashina M, Br, et al Efficacy of erenumab for the treatment of patients with chronic migraine in presence of medication overuse. *European Journal of Neurology*;24:472.

124. De Hoon J, Van Hecken A, Yan L, et al Phase 1, randomized, double-blind, placebocontrolled, single-dose and multiple dose studies of AMG334 in healthy subjects and migraine patients. *Cephalalgia* 2015;35(6):45-46.

125. Buse DC, Lipton RB, Hallstrom Y, et al Patient-reported outcomes from the STRIVE trial: a phase 3, randomized, double-blind study of erenumab in subjects with episodic migraine. *Headache* 2017;57:198-99.

126. Br, es JL, Diener H, et al Chronic migraine treatment with erenumab: Responder rates. *Headache*;57:197-98.

127. Aycardi E, Bigal M, McDonald M, et al Fremanezumab (formerly TEV-48125) decreases migraine symptoms such as nausea, vomiting, photophobia and phonophobia and reduces the need for acute medications in the first week of treatment in the HFEM study. *Headache*;57:184-85.

128. Aurora SK, Oakes TM, Zhang Q, et al Factors associated with significant reduction in migraine headache days: A post hoc analysis of a phase II placebo-controlled trial in patients treated with galcanezumab. *Headache*;57:182-83.

129. Aurora S, Ruff D, Zhang Q, et al Factors associated with significant reduction in migraine headache days: a post hoc analysis of phase 3 placebo-controlled trials of patients with episodic and chronic migraine treated with galcanezumab. *Headache* 2018:163.

130. Ashina M, Tepper S, Br, et al Efficacy of erenumab (AMG 334) in chronic migraine patients with prior prophylactic treatment failure: Subgroup analysis of the phase 2, randomised, double-blind, placebo-controlled study. *European Journal of Neurology*;24:470-71.

131. Ashina M, Goadsby PJ, Lipton RB, et al Eptinezumab for prevention of chronic migraine (CM): results of 2 infusions in the phase 3 promise-2 (prevention of migraine via intravenous eptinezumab safety and efficacy-2) trial. *Cephalalgia* 2018:84-85.

132. Ashina M, Br, es JL, et al Patient-reported outcomes from the ARISE trial: A phase 3, randomized, double-blind study of erenumab in subjects with episodic migraine. *Headache*;57:192.

133. Argoff C, Dong Y, Li LQ, et al Efficacy of galcanezumab in adults with treatment resistant migraine and concomitant pain disorders: Post-hoc subpopulation analyses from the randomized, double-blind, placebo-controlled conquer study. *Headache*;60:105-06.

134. Argoff C, Dong Y, Li L, et al Efficacy of galcanezumab in adults with treatment resistant migraine and concomitant pain disorders: Post-hoc subpopulation analyses from the randomized, double-blind, placebo-controlled CONQUER study. *Postgraduate Medicine* 2020;132:9.

135. Andreou AP, Wright P, Detke H, et al Galcanezumab shows efficacy as early as day 1 after initial treatment vs. placebo for the prevention of episodic and chronic migraine. *Neurology Conference: 72nd Annual Meeting of the American Academy of Neurology, AAN* 2020;94(15)

136. Amin F, Edvinsson L, Poole A, et al Impact of erenumab in a Scandinavian chronic migraine population-an interim analysis of the IMPROVE phase IV trial. *European Journal of Neurology*;28:896.

137. Altamura C, Brunelli N, Costa CM, et al The real-life early and continuative response to Galcanezumab in chronic migraine: 3-month analysis of the multicenter prospective cohort GARLIT

study. Journal of Headache and Pain Conference: International Headache Congress HIS and EHF Congress Virtual 2021;22

138. Alpuente A, Torres-Ferrus M, Caronna E, et al Correlation between patient-related outcome scales (PROs) and CGRP-mAbs treatment response at 3-months in migraine patients. *Journal of Headache and Pain Conference: International Headache Congress HIS and EHF Congress* 2021;22

139. Alpuente A, Torres-Ferrus M, Caronna E, et al Which patient-related outcome scale better reflects continuing treatment with CGRP-mAbs at 3-months in migraine patients? *Journal of Headache and Pain Conference: International Headache Congress HIS and EHF Congress* 2021;22

140. Ailani J, Ramirez-Campos V, Cohen JM, et al Reversion from Chronic to Episodic Migraine in Patients with Documented Inadequate Response to 2a-4 Classes of Migraine Preventive Treatments: Results of the Randomized, Placebo-Controlled FOCUS Study. *Postgraduate Medicine* 2019;131:42.

141. Ailani J, Ramirez-Campos V, Cohen JM, et al Reversion from chronic to episodic migraine in patients with documented inadequate response to 2-4 classes of migraine preventive treatments: Results of the randomised, placebocontrolled focus study. *Cephalalgia*;39:222.

142. Ailani J, Pearlman E, Zhang Q, et al Positive response to galcanezumab following treatment failure with onabotulinumtoxina in patients with migraine. *Headache*;58:1311-12.

143. Ailani J, McAllister P, Winner PK, et al Rapid resolution of migraine symptoms after initiating the preventive treatment eptinezumab during a migraine attack. *European Journal of Neurology*;28:307.

144. Ailani J, Kuruppu D, Rettiganti M, et al Does wearing-off of efficacy occurin galcanezumab-treated patients at the end of the monthly treatment cycle: A post hoc analysis of four phase 3 randomized trials. *Neurology Conference: 73rd Annual Meeting of the American Academy of Neurology, AAN* 2021;96(15)

145. Ailani J, Cohen JM, Yugrakh MS, et al Long-term impact of fremanezumab on headache-related disability and quality of life in patients who reverted from a chronic to an episodic migraine classification. *Headache*;59:116.

146. Ailani J, Cohen J, Yugrakh M, et al Long-term impact of fremanezumab on headache-related disability and quality of life in patients who reverted from a chronic to an episodic migraine classification. *Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN* 2019;92(15)

147. Ailani J, Andrews J, Tockhorn-Heidenreich A, et al Total pain burden in patients with treatmentresistant migraine: effects of galcanezumab in the CONQUER Phase 3b trial. *European journal of neurology* 2021;28:272-. 148. Abreu A, Pinheiro R, Parreira E. Erenumab in patients failing Onabotulinum toxin A for the treatment of refractory chronic migraine. *Journal of Headache and Pain Conference: International Headache Congress HIS and EHF Congress Virtual* 2021;22

149. Efficacy of fremanezumab in patients with lower and higher frequency chronic migraine. *Neurology* 2021;96(15)

150. Steiner TJ, Tfelt-Hansen P. Misused and Misleading: "100% Response Rate" to Galcanezumab in Patients With Episodic Migraine. *Headache*;59:626.

151. Charles JA. Consideration of Costs and Open-label Studies of Erenumab. JAMA neurology;76:236.

152. Alexoudi A, Deftereos S. CGRP Antagonists: Side Effects and Potential Parkinson's Disease Development. *Headache*;60:789-90.

153. Al-Hassany L, Van Den Brink AM. Targeting CGRP in migraine: a matter of choice and dose. *The Lancet Neurology*;19:712-13.

154. Vernieri F, Altamura C, Aurilia C, et al Effectiveness, safety, and tolerability of galcanezumab in a real-life setting in patients with migraine in Italy (the GARLIT study). *Neurological Sciences* 2020;41:487-88.

155. Schiano di Cola F, Rao R, Caratozzolo S, et al Erenumab efficacy in chronic migraine and medication overuse: a real-life multicentric Italian observational study. *Neurological Sciences* 2020;41:489-90.

156. Pensato U, Favoni V, Pascazio A, et al Erenumab efficacy in highly resistant chronic migraine: a real-life study. *Neurological Sciences* 2020;41:457-59.

157. Matteo E, Favoni V, Pascazio A, et al Erenumab in 159 high frequency and chronic migraine patients: real-life results from the Bologna Headache Center. *Neurological Sciences* 2020;41:483-84.

158. Curone M, Tullo V, Bussone G. Effectiveness of erenumab in chronic migraine patients with associated medication overuse headache: a prospective observational study. *Neurological Sciences* 2020;41:509-10.

159. Coccia A, Lapucci C, di Poggio MB, et al A longitudinal clinical and MRI evaluation of the treatment with erenumab. *Neurological Sciences* 2020;41:463-64.

160. Tfelt-Hansen P, Pascual J. Reporting withdrawals due to adverse events in single-attack acute migraine clinical trials. *Cephalalgia* 2015;35(4):366-7.

161. Stauffer VL, Oakes TM, Rettiganti M, et al Efficacy and safety of galcanezumab for preventive treatment of migraine: a systematic review and meta-analysis. *Journal of Neurology* 2021;268:1980.

162. Altamura C, Cevoli S, Brunelli N, et al When should we consider chronic patients as non-responders to monoclonal antibodies targeting the CGRP pathway? *Journal of Neurology* 2022;269:1032-34.

163. Ford JH, Ayer DW, Zhang Q, et al Two randomized migraine studies of galcanezumab: effects on patient functioning and disability. *Neurology* 2019;93(5):e508-e17.

164. Yang Y, Chen M, Wu D, et al Optimal dose of erenumab for preventive treatment of episodic migraine: a systematic review and meta-analysis. *Current neuropharmacology* 2021;22

165. Sessa M, Andersen M. New Insight on the Safety of Erenumab: An Analysis of Spontaneous Reports of Adverse Events Recorded in the US Food and Drug Administration Adverse Event Reporting System Database. *BioDrugs* 2021;35:215-27.

166. Nct. A Study to Evaluate the Efficacy and Safety of Erenumab (AMG 334) in Chronic Migraine Prevention. *https://clinicaltrialsgov/show/NCT02066415* 2014

167. Nct. A Phase 2 Study to Evaluate the Efficacy and Safety of Erenumab (AMG 334) in Migraine Prevention. *https://clinicaltrialsgov/show/NCT01952574* 2013

168. Kokoti L, Drellia K, Papadopoulos D, et al Placebo and nocebo responses in anti-CGRP monoclonal antibody trials for migraine prevention: A meta-analysis. *Journal of Headache and Pain Conference: 13th European Headache Federation Congress* 2019;20

169. Euctr NL. A study to see if galcanezumab is effective for migraine prevention in people who have not responded to or have not tolerated previous migraine prevention treatments. https://trialsearchwhoint/Trial2aspx?TrialID=EUCTR2018-000600-42-NL 2018

170. Euctr ES. A clinical trial of TEV-48125 versus Placebo for the Preventive Treatment of Episodic Migraine. *https://trialsearchwhoint/Trial2aspx?TrialID=EUCTR2015-004598-34-ES* 2016

171. Euctr BE. Evaluation of long term safety of LY2951742 in Patients with Migraine. https://trialsearchwhoint/Trial2aspx?TrialID=EUCTR2015-001884-38-BE 2015

172. Diener HC. Eptinezumab versus placebo for prophylaxis of chronic migraines (PROMISE-2). *Arzneimitteltherapie* 2020;38(6):251-52.

173. Diener HC. Eptinezumab for the prevention of episodic migraine (PROMISE-1). [German]. *Psychopharmakotherapie*;27:163.

174. Diener HC. Eptinezumab versus placebo for the prevention of chronic migraines (PROMISE-2). [German]. *Psychopharmakotherapie*;27:164-65.

175. Diener HC. Migraine prophylaxis: Effectiveness and safety of galcanezumab. [German]. *Arzneimitteltherapie*;38:512-13.

176. Diener HC. Migraine prevention: Erenumab for patients in whom previous therapies failed. [German]. *Arzneimitteltherapie*;37:138-39.

177. Diener HC. Eptinezumab versus placebo for prophylaxis of chronic migraines (PROMISE-2). [German]. *Arzneimitteltherapie*;38:251-52.

178. Diener HC. Eptinezumab for the prevention of episodic migraine. [German]. *Arzneimitteltherapie*;38:250-51.

179. Diener HC. Galcanezumab for the prophylaxis of chronic migraine. [German]. *Arzneimitteltherapie*;37:136-37.

180. Breen ID, Mangold AR, erPluym JH. The evolving understanding of risk with calcitonin generelated peptide monoclonal antibodies based on real-world data: A focus on hypertension and Raynaud phenomenon. *Headache* 2021;61:1274-76.

181. Ashina M, Tepper SJ, Br, et al Efficacy of erenumab (AMG 334) in chronic migraine patients with prior prophylactic treatment failure: Subgroup analysis of the phase 2, randomised, double-blind, placebo-controlled study. *Journal of Headache and Pain Conference: 11th European Headache Federation Congress Jointly with 31st Congress of the Italian Society for the Study of Headaches Rome Italy* 2017;18(1)

182. Ashina M, McAllister P, Cady R, et al Efficacy and safety of eptinezumab in patients with migraine and self-reported aura: Post hoc analysis PROMISE-1 and PROMISE-2. *Headache*;61:123.

183. Ashina M, Amin FM, Kokturk P, et al PEARL study protocol: A real-world study of fremanezumab effectiveness in patients with chronic or episodic migraine. *Pain Management*,11:647-54.

184. Aggarwal M, Puri V, Puri S. Serotonin and CGRP in migraine. *Annals of Neurosciences* 2012;19:88-94.

Incorrect study design (k=157)

1. Gklinos P, Mitsikostas DD. Galcanezumab in migraine prevention: a systematic review and metaanalysis of randomized controlled trials. *Therapeutic Advances in Neurological Disorders* 2020;13 2. Huang IH, Wu PC, Lee YH, et al Optimal treatment strategy of fremanezumab in migraine prevention: a systematic review with network meta-analysis of randomized clinical trials. *Scientific reports* 2020;10:18609.

3. Gao B, Sun N, Yang Y, et al Safety and efficacy of Fremanezumab for the prevention of migraine: A meta-analysis from randomized controlled trials. *Frontiers in Neurology* 2020;11:1-12.

4. Gao B, Lu Q, Wan R, et al Monthly versus quarterly fremanezumab for the prevention of migraine: a systemic review and meta-analysis from randomized controlled trials. *Naunyn-Schmiedeberg's Archives of Pharmacology* 2021;394:819-28.

5. Wang X, Chen Y, Song J, et al Efficacy and Safety of Monoclonal Antibody Against Calcitonin Gene-Related Peptide or Its Receptor for Migraine: A Systematic Review and Network Meta-analysis. *Frontiers in Pharmacology* 2021;12

6. Tiseo C, Ornello R, Pistoia F, et al How to integrate monoclonal antibodies targeting the calcitonin gene-related peptide or its receptor in daily clinical practice. *Journal of Headache and Pain* 2019;20

7. Sacco S, Bendtsen L, Ashina M, et al European headache federation guideline on the use of monoclonal antibodies acting on the calcitonin gene related peptide or its receptor for migraine prevention. *Journal of Headache and Pain* 2019;20

8. Masoud AT, Hasan MT, Sayed A, et al Efficacy of calcitonin gene-related peptide (CGRP) receptor blockers in reducing the number of monthly migraine headache days (MHDs): A network meta-analysis of randomized controlled trials. *Journal of the Neurological Sciences* 2021;427

9. Khan S, Olesen A, Ashina M. CGRP, a target for preventive therapy in migraine and cluster headache: Systematic review of clinical data. *Cephalalgia* 2019;39:374-89.

10. Huang IH, Wu PC, Lin EY, et al Effects of anti-calcitonin gene-related peptide for migraines: A systematic review with meta-analysis of randomized clinical trials. *International Journal of Molecular Sciences* 2019;20

11. Soni P, Chawla E. Quality of life related to functional disability in migraine patients: A systematic review and network-meta analysis. *Clinical Journal of Pain* 2021

12. Hou M, Xing H, Cai Y, et al The effect and safety of monoclonal antibodies to calcitonin gene-related peptide and its receptor on migraine: a systematic review and meta-analysis. *Journal of Headache and Pain* 2017;18

13. Frank F, Ulmer H, Sidoroff V, et al CGRP-antibodies, topiramate and botulinum toxin type A in episodic and chronic migraine: A systematic review and meta-analysis. *Cephalalgia* 2021;41:1222-39.

14. Alasad YW, Asha MZ. Monoclonal antibodies as a preventive therapy for migraine: A meta-analysis. *Clinical Neurology and Neurosurgery* 2020;195

15. Wang X, He Q, Wen D, et al Efficacy and safety of erenumab in migraine prevention: evidences from direct and indirect comparisons. *Neurological Sciences* 2021

16. Pellesi L, De Icco R, Alawie HY, et al A systematic review, meta-analysis and meta-regression evaluating the adverse reactions to erenumab in the preventive treatment of migraine. *Expert Opinion on Drug Safety* 2021;20:467-74.

17. Lattanzi S, Brigo F, Trinka E, et al Erenumab for Preventive Treatment of Migraine: A Systematic Review and Meta-Analysis of Efficacy and Safety. *Drugs* 2019;79:417-31.

18. Deligianni CI, Mitsikostas DD, Ashina M. Safety and tolerability evaluation of erenumab for the preventive treatment of migraine. *Expert Opinion on Drug Safety* 2021;20:867-76.

19. Xu D, Chen D, Zhu LN, et al Safety and tolerability of calcitonin-gene-related peptide binding monoclonal antibodies for the prevention of episodic migraine - a meta-analysis of randomized controlled trials. *Cephalalgia* 2019;39:1164-79.

20. Overeem LH, Raffaelli B, Mecklenburg J, et al Indirect Comparison of Topiramate and Monoclonal Antibodies Against CGRP or Its Receptor for the Prophylaxis of Episodic Migraine: A Systematic Review with Meta-Analysis. *CNS Drugs* 2021;35:805-20.

21. Hong P, Wu X, Liu Y. Calcitonin gene-related peptide monoclonal antibody for preventive treatment of episodic migraine: A meta analysis. *Clinical Neurology and Neurosurgery* 2017;154:74-78.

22. Zhu Y, Liu Y, Zhao J, et al The efficacy and safety of calcitonin gene-related peptide monoclonal antibody for episodic migraine: a meta-analysis. *Neurological Sciences* 2018;39:2097-106.

23. Shi M, Guo J, Li Z, et al Network meta-analysis on efficacy and safety of different anti-CGRP monoclonal antibody regimens for prophylaxis and treatment of episodic migraine. *Neurological Research* 2021;43:932-49.

24. Deng H, Li GG, Nie H, et al Efficacy and safety of calcitonin-gene-related peptide binding monoclonal antibodies for the preventive treatment of episodic migraine - An updated systematic review and meta-analysis. *BMC Neurology* 2020;20

25. Zhao X, Xu X, Li Q. Efficacy and safety of galcanezumab for preventive treatment of migraine: a systematic review and meta-analysis. *Journal of Neurology* 2021;268:2364-76.

26. Yang Y, Gao B, Xuan H, et al Different doses of galcanezumab versus placebo in patients with migraine and cluster headache: A meta-analysis of randomized controlled trials. *Journal of Headache and Pain* 2020;21

27. Ren Z, Zhang H, Wang R, et al The treatment efficacy of galcanezumab for migraine: A metaanalysis of randomized controlled trials. *Clinical Neurology and Neurosurgery* 2019;186

28. Abu-Zaid A, AlBatati SK, AlHossan AM, et al Galcanezumab for the Management of Migraine: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. *Cureus* 2020;12(11):e11621.

29. Zhu C, Guan J, Xiao H, et al Erenumab safety and efficacy in migraine: A systematic review and meta-analysis of randomized clinical trials. *Medicine (United States)* 2019;98

30. Yan Z, Xue T, Chen S, et al Different dosage regimens of Eptinezumab for the treatment of migraine: a meta-analysis from randomized controlled trials. *Journal of Headache and Pain* 2021;22

31. Yang CP, Zeng BY, Chang CM, et al Comparative Effectiveness and Tolerability of the Pharmacology of Monoclonal Antibodies Targeting the Calcitonin Gene-Related Peptide and Its Receptor for the Prevention of Chronic Migraine: a Network Meta-analysis of Randomized Controlled Trials. *Neurotherapeutics* 2021;18:2639-50.

32. Soni P, Chawla E. Efficacy and safety of anti-calcitonin gene-related peptide monoclonal antibodies for treatment of chronic migraine: A systematic review and network meta-analysis. *Clinical Neurology and Neurosurgery* 2021;209

33. Briceno-Casado MDP, Gil-Sierra MD, Fenix-Caballero S. Monoclonal antibodies against calcitonin gene-related peptide in chronic migraine: an adjusted indirect treatment comparison. *Farmacia Hospitalaria* 2020;44(5):212-17.

34. Han L, Liu Y, Xiong H, et al CGRP monoclonal antibody for preventive treatment of chronic migraine: An update of meta-analysis. *Brain and Behavior* 2019;9

35. Kokoti L, Drellia K, Papadopoulos D, et al Placebo and nocebo phenomena in anti- CGRP monoclonal antibody trials for migraine prevention: a meta-analysis. *Journal of Neurology*;267:1158-70.

36. Kuruppu DK, Tobin J, Dong Y, et al Efficacy of galcanezumab in patients with migraine who did not benefit from commonly prescribed preventive treatments. *BMC neurology* 2021;21(1):175.

37. Schwedt TJ, Kuruppu DK, Dong Y, et al Early onset of effect following galcanezumab treatment in patients with previous preventive medication failures. *Journal of headache and pain* 2021;22(1):15.

38. MaassenVanDenBrink A, Terwindt GM, Cohen JM, et al Impact of age and sex on the efficacy of fremanezumab in patients with difficult-to-treat migraine: results of the randomized, placebo-controlled, phase 3b FOCUS study. *Journal of headache and pain* 2021;22(1):152.

39. Marmura MJ, Diener HC, Cowan RP, et al Preventive migraine treatment with eptinezumab reduced acute headache medication and headache frequency to below diagnostic thresholds in patients with chronic migraine and medication-overuse headache. *Headache* 2021;61(9):1421-31.

40. Diener HC, Marmura MJ, Tepper SJ, et al Efficacy, tolerability, and safety of eptinezumab in patients with a dual diagnosis of chronic migraine and medication-overuse headache: subgroup analysis of PROMISE-2. *Headache* 2021;61(1):125-36.

41. Buse DC, Winner PK, Charleston L, et al Early response to eptinezumab indicates high likelihood of continued response in patients with chronic migraine. *Journal of Headache and Pain* 2022;23

42. Igarashi H, Shibata M, Ozeki A, et al Early onset and maintenance effect of galcanezumab in japanese patients with episodic migraine. *Journal of Pain Research* 2021;14:3555-64.

43. Winner PK, Spierings ELH, Yeung PP, et al Early Onset of Efficacy With Fremanezumab for the Preventive Treatment of Chronic Migraine. *Headache: the journal of head and face pain* 2019;59(10):1743-52.

44. Blumenfeld AM, Stevanovic DM, Ortega M, et al No "Wearing-Off Effect" Seen in Quarterly or Monthly Dosing of Fremanezumab: subanalysis of a Randomized Long-Term Study. *Headache* 2020;60(10):2431-43.

45. Lipton RB, Cohen JM, Bibeau K, et al Reversion From Chronic Migraine to Episodic Migraine in Patients Treated With Fremanezumab: post Hoc Analysis From HALO CM Study. *Headache* 2021;60(10):2444-53.

46. Silberstein SD, Cohen JM, Seminerio MJ, et al The impact of fremanezumab on medication overuse in patients with chronic migraine: subgroup analysis of the HALO CM study. *Journal of headache and pain* 2020;21(1):114.

47. Lipton RB, Cohen JM, Galic M, et al Effects of fremanezumab in patients with chronic migraine and comorbid depression: subgroup analysis of the randomized HALO CM study. *Headache* 2021;61(4):662-72.

48. Pavlovic JM, Paemeleire K, Göbel H, et al Efficacy and safety of erenumab in women with a history of menstrual migraine. *Journal of headache and pain* 2020;21(1):1-9.

49. McAllister PJ, Turner I, Reuter U, et al Timing and durability of response to erenumab in patients with episodic migraine. *Headache* 2021;61(10):1553-61.

50. Goadsby PJ, Paemeleire K, Broessner G, et al Efficacy and safety of erenumab (AMG334) in episodic migraine patients with prior preventive treatment failure: a subgroup analysis of a randomized, double-blind, placebo-controlled study. *Cephalalgia* 2019;39(7):817-26.

51. Diener HC, Ashina M, Ritter S, et al Erenumab prevents the occurrence of migraine attacks and not just migraine days: post-hoc analyses of a phase III study. *Cephalalgia* 2021:6.

52. Broessner G, Reuter U, Bonner JH, et al The Spectrum of Response to Erenumab in Patients With Episodic Migraine and Subgroup Analysis of Patients Achieving \geq 50%, \geq 75%, and 100% Response. *Headache: the journal of head and face pain* 2020;60(9):2026-40.

53. Lipton RB, Tepper SJ, Silberstein SD, et al Reversion from chronic migraine to episodic migraine following treatment with erenumab: results of a post-hoc analysis of a randomized, 12-week, double-blind study and a 52-week, open-label extension. *Cephalalgia* 2021;41(1):6-16.

54. Tepper SJ, Lucas S, Ashina M, et al Timing and durability of response to erenumab in patients with chronic migraine. *Headache* 2021;61(8):1255-63.

55. Lipton RB, Burstein R, Buse DC, et al Efficacy of erenumab in chronic migraine patients with and without ictal allodynia. *Cephalalgia* 2021;41(11):1152-60.

56. Brandes JL, Diener HC, Dolezil D, et al The spectrum of response to erenumab in patients with chronic migraine and subgroup analysis of patients achieving \geq 50%, \geq 75%, and 100% response. *Cephalalgia* 2020;40(1):28-38.

57. Silberstein SD, Rapoport AM, Loupe PS, et al The Effect of Beginning Treatment With Fremanezumab on Headache and Associated Symptoms in the Randomized Phase 2 Study of High Frequency Episodic Migraine: post-Hoc Analyses on the First 3 Weeks of Treatment. *Headache* 2019;59(3):383-93.

58. Bigal M, Rapoport A, Tepper S, et al TEV-48125 for the preventive treatment of chronic migraineefficacy at early time points. *Headache* 2016;5:265.

59. Goadsby PJ, Dodick DW, Martinez JM, et al Onset of efficacy and duration of response of galcanezumab for the prevention of episodic migraine: a post-hoc analysis. *Journal of neurology, neurosurgery, and psychiatry* 2019;90(8):939-44.

60. Garland SG, Smith SM, Gums JG. Erenumab: A First-in-Class Monoclonal Antibody for Migraine Prevention. *Annals of Pharmacotherapy* 2019;53:933-39.

61. Valle ED, Di Falco M, Mancioli A, et al Efficacy and safety of erenumab in the real-life setting of S. Antonio Abate Hospital's Headache Center (Gallarate). *Neurological Sciences* 2020;41:465.

62. Urits I, Yilmaz M, Charipova K, et al An Evidence-Based Review of Galcanezumab for the Treatment of Migraine. *Neurology and Therapy* 2020;9:403-17.

63. Urits I, Jones MR, Gress K, et al CGRP Antagonists for the Treatment of Chronic Migraines: a Comprehensive Review. *Current Pain and Headache Reports* 2019;23

64. Urits I, Clark G, An D, et al An Evidence-Based Review of Fremanezumab for the Treatment of Migraine. *Pain and Therapy* 2019;9:195-215.

65. Torres-Ferrus M, Alpuente A, Pozo-Rosich P. How much do calcitonin gene-related peptide monoclonal antibodies improve the quality of life in migraine? A patient's perspective. *Current Opinion in Neurology* 2019;32:395-404.

66. Tepper SJ, Ashina M, Reuter U, et al Reduction in acute migraine-specific and non-specific medication use in patients treated with erenumab: post-hoc analyses of episodic and chronic migraine clinical trials. *Journal of Headache and Pain* 2021;22

67. Takeshima T, Nakai M, Shibasaki Y, et al Early onset of efficacy with fremanezumab in patients with episodic and chronic migraine: subanalysis of two phase 2b/3 trials in Japanese and Korean patients. *Journal of headache and pain* 2022;23(1):24.

68. Stauffer VL, Wang S, Voulgaropoulos M, et al Effect of Galcanezumab Following Treatment Cessation in Patients With Migraine: results From 2 Randomized Phase 3 Trials. *Headache* 2019;59(6):834-47.

69. Stauffer VL, Wang S, Bonner J, et al Evaluation of injection-site-related adverse events with galcanezumab: a post hoc analysis of phase 3 studies in participants with migraine. *BMC neurology* 2020;20(1):194.

70. Stauffer VL, Turner I, Kemmer P, et al Effect of age on pharmacokinetics, efficacy, and safety of galcanezumab treatment in adult patients with migraine: results from six phase 2 and phase 3 randomized clinical trials. *Journal of headache and pain* 2020;21(1):79.

71. Smitherman TA, Tietjen GE, Schuh K, et al Efficacy of Galcanezumab for Migraine Prevention in Patients With a Medical History of Anxiety and/or Depression: a Post Hoc Analysis of the Phase 3, Randomized, Double-Blind, Placebo-Controlled REGAIN, and Pooled EVOLVE-1 and EVOLVE-2 Studies. *Headache* 2020;60(10):2202-19.

72. Smith TR, Spierings ELH, Cady R, et al Safety and tolerability of eptinezumab in patients with migraine: a pooled analysis of 5 clinical trials. *Journal of Headache and Pain* 2021;22(1)

73. Smith TR, Spierings ELH, Cady R, et al Cardiovascular outcomes in adults with migraine treated with eptinezumab for migraine prevention: pooled data from four randomized, double-blind, placebo-controlled studies. *Journal of headache and pain* 2021;22(1):143.

74. Silberstein SD, Stauffer VL, Day KA, et al Galcanezumab in episodic migraine: subgroup analyses of efficacy by high versus low frequency of migraine headaches in phase 3 studies (EVOLVE-1 & EVOLVE-2). *Journal of headache and pain* 2019;20(1):1-11.

75. Silberstein SD, McAllister P, Ning X, et al Safety and Tolerability of Fremanezumab for the Prevention of Migraine: a Pooled Analysis of Phases 2b and 3 Clinical Trials. *Headache: the journal of head and face pain* 2019;59(6):880-90.

76. Silberstein SD, Cohen JM, Yang R, et al Treatment benefit among migraine patients taking fremanezumab: results from a post hoc responder analysis of two placebo-controlled trials. *Journal of headache and pain* 2021;22(1):2.

77. Scott LJ. Galcanezumab: A Review in the Prevention of Migraine and Treatment of Episodic Cluster Headache. *Drugs* 2020;80:893-904.

78. Schwedt T, Reuter U, Tepper S, et al Early onset of efficacy with erenumab in patients with episodic and chronic migraine. *Journal of headache and pain* 2018;19(1):92.

79. Schumock GT, Stubbings J, Wiest MD, et al National trends in prescription drug expenditures and projections for 2018. *American Journal of Health-System Pharmacy* 2018;75:1023-38.

80. Ruff DD, Ford JH, Tockhorn-Heidenreich A, et al Efficacy of galcanezumab in patients with episodic migraine and a history of preventive treatment failure: results from two global randomized clinical trials. *European journal of neurology* 2020;27(4):609-18.

81. Rosen N, Pearlman E, Ruff D, et al 100% Response Rate to Galcanezumab in Patients With Episodic Migraine: a Post Hoc Analysis of the Results From Phase 3, Randomized, Double-Blind, Placebo-Controlled EVOLVE-1 and EVOLVE-2 Studies. *Headache* 2018;58(9):1347-57.

82. Rivera-Mancilla E, Villalon CM, MaassenVanDenBrink A. CGRP inhibitors for migraine prophylaxis: a safety review. *Expert Opinion on Drug Safety* 2020;19:1237-50.

83. Pozo-Rosich P, Samaan KH, Schwedt TJ, et al Galcanezumab Provides Consistent Efficacy Throughout the Dosing Interval Among Patients with Episodic and Chronic Migraine: a Post Hoc Analysis. *Advances in therapy* 2021;38(6):3154-65. 84. Pervez H, Khemani L, Khan MA, et al Calcitonin Gene-Related Peptide Antagonists as a Savior in Episodic and Chronic Migraine: A Review. *Cureus* 2020;12(6):e8711.

85. Parikh SK, Burkett JG, Silberstein SD. A comprehensive overview and safety evaluation of fremanezumab as a preventive therapy for migraine. *Expert Opinion on Drug Safety* 2020;19:537-43.

86. Oakes TM, Kovacs R, Rosen N, et al Evaluation of Cardiovascular Outcomes in Adult Patients With Episodic or Chronic Migraine Treated With Galcanezumab: data From Three Phase 3, Randomized, Double-Blind, Placebo-Controlled EVOLVE-1, EVOLVE-2, and REGAIN Studies. *Headache: the journal of head and face pain* 2020;60(1):110-23.

87. Noseda R, Bedussi F, Gobbi C, et al Safety profile of erenumab, galcanezumab and fremanezumab in pregnancy and lactation: Analysis of the WHO pharmacovigilance database. *Cephalalgia* 2021;41(7):789-98.

88. Nichols R, Doty E, Sacco S, et al Analysis of Initial Nonresponders to Galcanezumab in Patients With Episodic or Chronic Migraine: results From the EVOLVE-1, EVOLVE-2, and REGAIN Randomized, Double-Blind, Placebo-Controlled Studies. *Headache* 2019;59(2):192-204.

89. Nahas SJ, Naegel S, Cohen JM, et al Efficacy and safety of fremanezumab in clinical trial participants aged \geq 60 years with episodic or chronic migraine: pooled results from 3 randomized, double-blind, placebo-controlled phase 3 studies. *Journal of Headache and Pain* 2021;22(1)

90. Moehring F, Sadler KE. Female-Specific Effects of CGRP suggest limited efficacy of new migraine treatments in males. *Journal of Neuroscience* 2019;39:9062-64.

91. Lipton RB, Dodick DW, Kudrow D, et al Reduction in migraine pain intensity in patients treated with erenumab: a post hoc analysis of two pivotal randomized studies. *Cephalalgia* 2021;41(14):1458-66.

92. Lipton RB, Charleston L, Tassorelli C, et al Patient-reported outcomes, health-related quality of life, and acute medication use in patients with a >= 75% response to eptinezumab: subgroup pooled analysis of the PROMISE trials. *Journal of Headache and Pain* 2022;23

93. Kudrow D, Pascual J, Winner PK, et al Vascular safety of erenumab for migraine prevention. *Neurology* 2020;94(5):e497-e510.

94. Kawata AK, Ladd MK, Lipton RB, et al Reducing the physical, social, and emotional impact of episodic migraine: Results from erenumab STRIVE and ARISE phase III randomized trials. *Headache* 2022;62:159-68.

95. Jedynak J, Eross E, Gendolla A, et al Shift from high-frequency to low-frequency episodic migraine in patients treated with Galcanezumab: results from two global randomized clinical trials. *Journal of headache and pain* 2021;22(1):1-10.

96. Houts CR, Wirth RJ, McGinley JS, et al Determining Thresholds for Meaningful Change for the Headache Impact Test (HIT-6) Total and Item-Specific Scores in Chronic Migraine. *Headache* 2020;60(9):2003-13.

97. Houts CR, McGinley JS, Wirth RJ, et al Reliability and validity of the 6-item Headache Impact Test in chronic migraine from the PROMISE-2 study. *Quality of Life Research* 2021;30:931-43.

98. Halker Singh RB, Aycardi E, Bigal ME, et al Sustained reductions in migraine days, moderate-tosevere headache days and days with acute medication use for HFEM and CM patients taking fremanezumab: post-hoc analyses from phase 2 trials. *Cephalalgia* 2019;39(1):52-60.

99. Giamberardino MA, Affaitati G, Costantini R, et al Calcitonin Gene-Related peptide receptor as a novel target for the management of people with episodic migraine: Current evidence and safety profile of erenumab. *Journal of Pain Research* 2017;10:2751-60.

100. Förderreuther S, Zhang Q, Stauffer VL, et al Preventive effects of galcanezumab in adult patients with episodic or chronic migraine are persistent: data from the phase 3, randomized, double-blind, placebo-controlled EVOLVE-1, EVOLVE-2, and REGAIN studies. *Journal of headache and pain* 2018;19(1):121.

101. Ford JH, Kurth T, Starling AJ, et al Migraine Headache Day Response Rates and the Implications to Patient Functioning: an Evaluation of 3 Randomized Phase 3 Clinical Trials of Galcanezumab in Patients With Migraine. *Headache* 2020;60(10):2304-19.

102. Ford JH, Foster SA, Stauffer VL, et al Patient satisfaction, health care resource utilization, and acute headache medication use with galcanezumab: results from a 12-month open-label study in patients with migraine. *Patient preference and adherence* 2018;12:2413-24.

103. Ford J, Tassorelli C, Leroux E, et al Changes in patient functioning and disability: results from a phase 3, double-blind, randomized, placebo-controlled clinical trial evaluating galcanezumab for chronic migraine prevention (REGAIN). *Quality of life research* 2021;30(1):105-15.

104. Dodick DW, Tepper SJ, Ailani J, et al Risk of hypertension in erenumab-treated patients with migraine: Analyses of clinical trial and postmarketing data. *Headache* 2021;61(9):1411-20.

105. Dodick DW, Gottschalk C, Cady R, et al Eptinezumab Demonstrated Efficacy in Sustained Prevention of Episodic and Chronic Migraine Beginning on Day 1 After Dosing. *Headache* 2020;60(10):2220-31.

106. Dodick DW, Doty EG, Aurora SK, et al Medication overuse in a subgroup analysis of phase 3 placebo-controlled studies of galcanezumab in the prevention of episodic and chronic migraine. *Cephalalgia* 2021;41(3):340-52.

107. Detke HC, Millen BA, Zhang Q, et al Rapid Onset of Effect of Galcanezumab for the Prevention of Episodic Migraine: analysis of the EVOLVE Studies. *Headache: the journal of head and face pain* 2020;60(2):348-59.

108. Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. *Headache* 2013;53:1230-44.

109. Bangs ME, Kudrow D, Wang SF, et al Safety and tolerability of monthly galcanezumab injections in patients with migraine: integrated results from migraine clinical studies. *BMC neurology* 2020;20(1):18.

110. Ashina M, Kudrow D, Reuter U, et al Long-term tolerability and nonvascular safety of erenumab, a novel calcitonin gene-related peptide receptor antagonist for prevention of migraine: a pooled analysis of four placebo-controlled trials with long-term extensions. *Cephalalgia* 2019

111. Ashina M, Goadsby PJ, Dodick DW, et al Assessment of Erenumab Safety and Efficacy in Patients with Migraine with and Without Aura: A Secondary Analysis of Randomized Clinical Trials. *JAMA Neurology* 2022;79:159-68.

112. Ashina M, Cohen JM, hi SK, et al Reduction in the severity and duration of headache following fremanezumab treatment in patients with episodic and chronic migraine. *Headache: the journal of head and face pain* 2021;61(6):916-26.

113. Arca K, Reynolds J, s KA, et al Calcitonin Gene-Related Peptide Antagonists for the Prevention of Migraine: Highlights From Pivotal Studies and the Clinical Relevance of This New Drug Class. *Annals of Pharmacotherapy* 2020;54:795-803.

114. Andreou AP, Fuccaro M, Lambru G. The role of erenumab in the treatment of migraine. *Therapeutic Advances in Neurological Disorders* 2020;13

115. Ament M, Day K, Stauffer VL, et al Effect of galcanezumab on severity and symptoms of migraine in phase 3 trials in patients with episodic or chronic migraine. *Journal of Headache and Pain* 2021;22

116. Allais G, Chiarle G, Sinigaglia S, et al Menstrual migraine: a review of current and developing pharmacotherapies for women. *Expert Opinion on Pharmacotherapy* 2018;19:123-36.

117. Ailani J, Pearlman E, Zhang Q, et al Positive response to galcanezumab following treatment failure to onabotulinumtoxinA in patients with migraine: post hoc analyses of three randomized double-blind studies. *European journal of neurology* 2020;27(3):542-49.

118. Ailani J, Kuruppu DK, Rettiganti M, et al Does "wearing off" of efficacy occur in galcanezumabtreated patients at the end of the monthly treatment cycle? Post hoc analyses of four phase III randomized trials. *Headache* 2022;62:198-207.

119. Ailani J, Andrews JS, Rettiganti M, et al Impact of galcanezumab on total pain burden: Findings from phase 3 randomized, double-blind, placebo-controlled studies in patients with episodic or chronic migraine. *Neurology Conference: 72nd Annual Meeting of the American Academy of Neurology, AAN* 2020;94(15)

NOTE: The following 38 citations include identified observational evidence that met the PICO criteria, these publications were excluded based on 'incorrect study design' due to the hierarchical selection process taken. A targeted screening of this observational evidence was conducted to answer the Additional Question(s) (see Section 6.1) regarding 'switching of CGRP-antagonists', however no relevant evidence was identified.

120. Dinh BBK, Aziz WH, Terruzzi A, et al Initial experience with novel CGRP-receptor inhibitor therapy in Migraine in the United Arab Emirates: a retrospective observational study. *BMC Neurology* 2021;21(1):486.

121. Raffaelli B, Terhart M, Overeem LH, et al Migraine evolution after the cessation of CGRP(-receptor) antibody prophylaxis: a prospective, longitudinal cohort study. *Cephalalgia* 2021

122. Ornello R, Baraldi C, Guerzoni S, et al Gender Differences in 3-Month Outcomes of Erenumab Treatment-Study on Efficacy and Safety of Treatment With Erenumab in Men. *Frontiers in Neurology* 2021;12

123. Kanaan S, Hettie G, Loder E, et al Real-world effectiveness and tolerability of erenumab: A retrospective cohort study. *Cephalalgia* 2020;40:1511-22.

124. Terhart M, Mecklenburg J, Neeb L, et al Deterioration of headache impact and health-related quality of life in migraine patients after cessation of preventive treatment with CGRP(-receptor) antibodies. *Journal of Headache and Pain* 2021;22

125. Viudez-Martinez A, Pascual-Carrasco A, Beltran-Blasco I, et al Effectiveness and safety of erenumab and galcanezumab in the prevention of chronic and episodic migraine: A retrospective cohort study. *Journal of Clinical Pharmacy and Therapeutics* 2022

126. Alpuente A, Gallardo VJ, Caronna E, et al In search of a gold standard patient-reported outcome measure to use in the evaluation and treatment-decision making in migraine prevention. A real-world evidence study. *Journal of Headache and Pain* 2021;22

127. Straube A, Stude P, Gaul C, et al Real-world evidence data on the monoclonal antibody erenumab in migraine prevention: perspectives of treating physicians in Germany. *Journal of Headache and Pain* 2021;22

128. Storch P, Burow P, Moller B, et al Pooled retrospective analysis of 70 mg erenumab in episodic and chronic migraine: a two tertiary headache centers experience during clinical practice. *Acta Neurologica Belgica* 2021

129. Scheffler A, Messel O, Wurthmann S, et al Erenumab in highly therapy-refractory migraine patients: First German real-world evidence. *Journal of Headache and Pain* 2020;21

130. Ornello R, Casalena A, Frattale I, et al Real-life data on the efficacy and safety of erenumab in the Abruzzo region, central Italy. *Journal of Headache and Pain* 2020;21

131. Belvis R, Irimia P, Pozo-Rosich P, et al MAB-MIG: registry of the spanish neurological society of erenumab for migraine prevention. *Journal of Headache and Pain* 2021;22

132. Barbanti P, Aurilia C, Egeo G, et al Erenumab in the prevention of high-frequency episodic and chronic migraine: Erenumab in Real Life in Italy (EARLY), the first Italian multicenter, prospective reallife study. *Headache* 2021;61:363-72.

133. Barbanti P, Aurilia C, Cevoli S, et al Long-term (48 weeks) effectiveness, safety, and tolerability of erenumab in the prevention of high-frequency episodic and chronic migraine in a real world: Results of the EARLY 2 study. *Headache* 2021;61:1351-63.

134. Torres-Ferrus M, Gallardo VJ, Alpuente A, et al The impact of anti-CGRP monoclonal antibodies in resistant migraine patients: a real-world evidence observational study. *Journal of Neurology* 2021;268:3789-98.

135. Pensato U, Baraldi C, Favoni V, et al Real-life assessment of erenumab in refractory chronic migraine with medication overuse headache. *Neurological Sciences* 2022;43:1273-80.

136. Guerzoni S, Baraldi C, Pensato U, et al Chronic migraine evolution after 3 months from erenumab suspension: real-world-evidence-life data. *Neurological Sciences* 2022

137. Baraldi C, Castro FL, Cainazzo MM, et al Predictors of response to erenumab after 12 months of treatment. *Brain and Behavior* 2021;11

138. Iannone LF, Fattori D, Benemei S, et al Long-Term Effectiveness of Three Anti-CGRP Monoclonal Antibodies in Resistant Chronic Migraine Patients Based on the MIDAS score. *CNS Drugs* 2022;36:191-202.

139. Vernieri F, Altamura C, Brunelli N, et al Galcanezumab for the prevention of high frequency episodic and chronic migraine in real life in Italy: a multicenter prospective cohort study (the GARLIT study). *Journal of Headache and Pain* 2021;22

140. Vernieri F, Brunelli N, Messina R, et al Discontinuing monoclonal antibodies targeting CGRP pathway after one-year treatment: an observational longitudinal cohort study. *Journal of Headache and Pain* 2021;22

141. Schoenen J, Timmermans G, Nonis R, et al Erenumab for Migraine Prevention in a 1-Year Compassionate Use Program: Efficacy, Tolerability, and Differences Between Clinical Phenotypes. *Frontiers in Neurology* 2021;12

142. Gladstone J, Chhibber S, Minhas J, et al Real-world persistence of erenumab for preventive treatment of chronic and episodic migraine: Retrospective real-world study. *Headache* 2022;62:78-88.

143. de Vries Lentsch S, Verhagen IE, van den Hoek TC, et al Treatment with the monoclonal calcitonin gene-related peptide receptor antibody erenumab: A real-life study. *European Journal of Neurology* 2021;28:4194-203.

144. Bogdanov A, Chia V, Bensink M, et al Early use of erenumab in US real-world practice. *Cephalalgia Reports* 2021;4

145. Silvestro M, Tessitore A, Scotto di Clemente F, et al Refractory migraine profile in CGRPmonoclonal antibodies scenario. *Acta Neurologica Scandinavica* 2021;144:325-33.

146. Vernieri F, Altamura C, Brunelli N, et al Rapid response to galcanezumab and predictive factors in chronic migraine patients: A 3-month observational, longitudinal, cohort, multicenter, Italian real-life study. *European Journal of Neurology* 2021

147. Caronna E, Gallardo VJ, Alpuente A, et al Anti-CGRP monoclonal antibodies in chronic migraine with medication overuse: real-life effectiveness and predictors of response at 6 months. *Journal of Headache and Pain* 2021;22

148. Tepper SJ, Fang J, Vo P, et al Impact of erenumab on acute medication usage and health care resource utilization among migraine patients: a US claims database study. *Journal of Headache and Pain* 2021;22

149. Talbot J, Stuckey R, Crawford L, et al Improvements in pain, medication use and quality of life in onabotulinumtoxinA-resistant chronic migraine patients following erenumab treatment - real world outcomes. *Journal of Headache and Pain* 2021;22

150. Russo A, Silvestro M, Scotto di Clemente F, et al Multidimensional assessment of the effects of erenumab in chronic migraine patients with previous unsuccessful preventive treatments: a comprehensive real-world experience. *Journal of headache and pain* 2020;21(1):69.

151. Raffaelli B, Kalantzis R, Mecklenburg J, et al Erenumab in Chronic Migraine Patients Who Previously Failed Five First-Line Oral Prophylactics and OnabotulinumtoxinA: A Dual-Center Retrospective Observational Study. *Frontiers in Neurology* 2020;11

152. Ornello R, Casalena A, Frattale I, et al Conversion from chronic to episodic migraine in patients treated with erenumab: Real-life data from an Italian region. *Journal of Headache and Pain* 2020;21

153. Mahovic D, Bracic M, Jakus L, et al Effectiveness and safety of erenumab in chronic migraine: A Croatian real-world experience. *Clinical Neurology and Neurosurgery* 2022;214

154. Lambru G, Hill B, Murphy M, et al A prospective real-world analysis of erenumab in refractory chronic migraine. *Journal of headache and pain* 2020;21(1):61.

155. Cheng S, Jenkins B, Limberg N, et al Erenumab in Chronic Migraine: An Australian Experience. *Headache* 2020;60:2555-62.

156. Cainazzo MM, Baraldi C, Ferrari A, et al Erenumab for the preventive treatment of chronic migraine complicated with medication overuse headache: an observational, retrospective, 12-month real-life study. *Neurological Sciences* 2021;42:4193-202.

157. Zecca C, Cargnin S, Schankin C, et al linic and genetic predictors in response to erenumab. *European Journal of Neurology* 2021

Incorrect language (k=0)

Nil

Incorrect date limit (k=4)

- 1. Lipton RB, Stewart WF, Von Korff M. The Burden of Migraine: A Review of Cost to Society. PharmacoEconomics 1994;6(3):215-21.
- 2. Ferrari MD. The Economic Burden of Migraine to Society. PharmacoEconomics 1998;13(6):667-76.
- 3. Davey PJ, Leeder SR. The Cost of Migraine: More Than Just a Headache? PharmacoEconomics 1992;2(1):5-7.
- 4. Berg J. Economic Evidence in Migraine and Other Headaches: A Review. European Journal of Health Economics 2004;5:S43-54.

Duplicates (k=93)

1. Riederer F. Efficacy and safety of galcanezumab for the prevention of episodic migraine: Results of the EVOLVE-2 phase 3 randomized controlled clinical trial. [German]. *Journal fur Neurologie, Neurochirurgie und Psychiatrie* 2019;20:80-81.

2. Riederer F. Efficacy and safety of galcanezumab for the prevention of episodic migraine: results of the EVOLVE-2 phase 3 randomized controlled clinical trial. *Journal fur neurologie, neurochirurgie und psychiatrie* 2019;20(2):80-81.

3. Winner PK, Spierings ELH, Yeung PP, et al Early Onset of Efficacy With Fremanezumab for the Preventive Treatment of Chronic Migraine. *Headache* 2019;59(10):1743-52.

4. Wang SJ, Roxas AA, Saravia B, et al Randomised, controlled trial of erenumab for the prevention of episodic migraine in patients from Asia, the Middle East, and Latin America: the EMPOwER study. *Cephalalgia* 2021;41(13):1285-97.

5. Vernieri F, Altamura C, Brunelli N, et al Galcanezumab for the prevention of high frequency episodic and chronic migraine in real life in Italy: a multicenter prospective cohort study (the GARLIT study). *Journal of Headache and Pain* 2021;22(1)

6. Tepper SJ, Lucas S, Ashina M, et al Timing and durability of response to erenumab in patients with chronic migraine. *Headache* 2021:9.

7. Tepper SJ, Diener HC, Ashina M, et al Erenumab in chronic migraine with medication overuse: Subgroup analysis of a randomized trial. *Neurology*;92:E2309-E20.

8. Tepper SJ, Ashina M, Reuter U, et al Reduction in acute migraine-specific and non-specific medication use in patients treated with erenumab: post-hoc analyses of episodic and chronic migraine clinical trials. *Journal of headache and pain* 2021;22(1):14.

9. Tepper SJ, Ailani J, Ford JH, et al Effects of Galcanezumab on Health-Related Quality of Life and Disability in Patients with Previous Failure of 2-4 Migraine Preventive Medication Categories: Results from a Phase IIIb Randomized, Placebo-Controlled, Multicenter Clinical Trial (CONQUER). *Clinical Drug Investigation* 2022

10. Takeshima T, Sakai F, Hirata K, et al Erenumab treatment for migraine prevention in Japanese patients: efficacy and safety results from a Phase 3, randomized, double-blind, placebo-controlled study. *Headache: the journal of head and face pain* 2021;61(6):927-35.

11. Sun H, Dodick DW, Silberstein S, et al Safety and efficacy of AMG 334 for prevention of episodic migraine: A randomised, double-blind, placebo-controlled, phase 2 trial. *The Lancet Neurology*;15:382-90.

12. Spierings ELH, Ning XP, Campos VR, et al Improvements in quality of life and work productivity with up to 6 months of fremanezumab treatment in patients with episodic and chronic migraine and documented inadequate response to 2 to 4 classes of migraine-preventive medications in the phase 3b FOCUS study. *Headache* 2021:11.

13. Spierings ELH, Ning X, Ramirez Campos V, et al Improvements in quality of life and work productivity with up to 6 months of fremanezumab treatment in patients with episodic and chronic migraine and documented inadequate response to 2 to 4 classes of migraine-preventive medications in the phase 3b FOCUS study. *Headache: the journal of head and face pain* 2021;61(9):1376-86.

14. Smitherman TA, Tietjen GE, Schuh K, et al Efficacy of Galcanezumab for Migraine Prevention in Patients With a Medical History of Anxiety and/or Depression: a Post Hoc Analysis of the Phase 3, Randomized, Double-Blind, Placebo-Controlled REGAIN, and Pooled EVOLVE-1 and EVOLVE-2 Studies. *Headache: the journal of head and face pain* 2020;60(10):2202-19.

15. Smith TR, Spierings ELH, Cady R, et al Safety and tolerability of eptinezumab in patients with migraine: a pooled analysis of 5 clinical trials. *Journal of headache and pain* 2021;22(1):11.

16. Smith TR, Spierings ELH, Cady R, et al Safety and tolerability of eptinezumab in patients with migraine: a pooled analysis of 5 clinical trials. *Journal of Headache and Pain*;22

17. Smith J, Dodick D, Goadsby P, et al Proof of concept clinical trial of ALD403, an anti-calcitonin gene-related peptide (CGRP) antibody in the prevention of migraine-6 month data. *Cephalalgia* 2015;35(6):4-5.

18. Smith J, Dodick D, Goadsby P, et al Randomized, double-blind, placebocontrolled trial of ALD403, an antiCGRP peptide antibody in the prevention of chronic migraine. *Cephalalgia*;36:43.

19. Skljarevski V, Oakes TM, Zhang Q, et al Effect of different doses of Galcanezumab vs Placebo for episodic migraine prevention a randomized clinical trial. *JAMA Neurology*;75:187-93.

20. Silberstein SD, Stauffer VL, Day KA, et al Galcanezumab in episodic migraine: subgroup analyses of efficacy by high versus low frequency of migraine headaches in phase 3 studies (EVOLVE-1 & EVOLVE-2). *Journal of headache and pain* 2019;20(1):75.

21. Silberstein SD, McAllister P, Ning X, et al Safety and Tolerability of Fremanezumab for the Prevention of Migraine: A Pooled Analysis of Phases 2b and 3 Clinical Trials. *Headache*;59:880-90.

22. Silberstein S, Diamond M, Hindiyeh NA, et al Eptinezumab for the prevention of chronic migraine: efficacy and safety through 24 weeks of treatment in the phase 3 PROMISE-2 (Prevention of migraine via intravenous ALD403 safety and efficacy-2) study. *Journal of headache and pain* 2020;21(1):120.

23. Schwedt T, Reuter U, Tepper S, et al Early onset of efficacy with erenumab in patients with episodic and chronic migraine. *Journal of Headache and Pain*;19

24. Sakai F, Takeshima T, Tatsuoka Y, et al Long-term efficacy and safety during open-label erenumab treatment in Japanese patients with episodic migraine. *Headache* 2021:9.

25. Sakai F, Takeshima T, Tatsuoka Y, et al Long-term efficacy and safety during open-label erenumab treatment in Japanese patients with episodic migraine. *Headache: the journal of head and face pain* 2021;61(4):653-61.

26. Sakai F, Suzuki N, Ning XP, et al Long-Term Safety and Tolerability of Fremanezumab for Migraine Preventive Treatment in Japanese Outpatients: a Multicenter, Randomized, Open-Label Study. *Drug safety* 2021:10.

27. Sakai F, Suzuki N, Kim BK, et al Efficacy and safety of fremanezumab for episodic migraine prevention: Multicenter, randomized, double-blind, placebo-controlled, parallel-group trial in Japanese and Korean patients. *Headache*;61:1102-11.

28. Sakai F, Suzuki N, Kim BK, et al Efficacy and safety of fremanezumab for chronic migraine prevention: Multicenter, randomized, double-blind, placebo-controlled, parallel-group trial in Japanese and Korean patients. *Headache*;61:1092-101.

29. Sakai F, Suzuki N, Kim BK, et al Efficacy and safety of fremanezumab for chronic migraine prevention: Multicenter, randomized, double-blind, placebo-controlled, parallel-group trial in Japanese and Korean patients. *Headache* 2021;61(7):1092-101.

30. Sakai F, Suzuki N, Kim B, et al Efficacy and safety of fremanezumab for episodic migraine prevention: multicenter, randomized, double-blind, placebo-controlled, parallel-group trial in Japanese and Korean patients. *Headache: the journal of head and face pain* 2021;61(7):1102-11.

31. Sakai F, Suzuki N, Kim B, et al Efficacy and safety of fremanezumab for chronic migraine prevention: multicenter, randomized, double-blind, placebo-controlled, parallel-group trial in Japanese and Korean patients. *Headache: the journal of head and face pain* 2021;61(7):1092-101.

32. Rosen N, Pearlman E, Ruff D, et al 100% Response Rate to Galcanezumab in Patients With Episodic Migraine: a Post Hoc Analysis of the Results From Phase 3, Randomized, Double-Blind, Placebo-Controlled EVOLVE-1 and EVOLVE-2 Studies. *Headache: the journal of head and face pain* 2018;58(9):1347-57.

33. Reuter U, Ehrlich M, Gendolla A, et al Erenumab versus topiramate for the prevention of migraine
– a randomised, double-blind, active-controlled phase 4 trial. *Cephalalgia* 2021

34. Okonkwo R, Tockhorn-Heidenreich A, Stroud C, et al Efficacy of galcanezumab in patients with migraine and history of failure to 3-4 preventive medication categories: subgroup analysis from CONQUER study. *Journal of Headache and Pain*;22

35. Oakes TM, Kovacs R, Rosen N, et al Evaluation of Cardiovascular Outcomes in Adult Patients With Episodic or Chronic Migraine Treated With Galcanezumab: data From Three Phase 3, Randomized, Double-Blind, Placebo-Controlled EVOLVE-1, EVOLVE-2, and REGAIN Studies. *Headache* 2020;60(1):110-23.

36. Oakes T, Zhang Q, Ferguson M, et al Efficacy and safety of LY2951742 in a randomized, doubleblind, placebo-controlled, dose-ranging study in patients with migraine. *Postgraduate medicine* 2016;128:103-04.

37. Nichols R, Doty E, Sacco S, et al Analysis of Initial Nonresponders to Galcanezumab in Patients With Episodic or Chronic Migraine: results From the EVOLVE-1, EVOLVE-2, and REGAIN Randomized, Double-Blind, Placebo-Controlled Studies. *Headache: the journal of head and face pain* 2019;59(2):192-204.

38. Nahas SJ, Naegel S, Cohen JM, et al Efficacy and safety of fremanezumab in clinical trial participants aged ≥ 60 years with episodic or chronic migraine: pooled results from 3 randomized, double-blind, placebo-controlled phase 3 studies. *Journal of headache and pain* 2021;22(1):141.

39. Nahas SJ, Naegel S, Cohen JM, et al Efficacy and safety of fremanezumab in clinical trial participants aged >=60 years with episodic or chronic migraine: pooled results from 3 randomized, double-blind, placebo-controlled phase 3 studies. *Journal of Headache and Pain*;22

40. Mulleners WM, Kim BK, Lainez MJA, et al Safety and efficacy of galcanezumab in patients for whom previous migraine preventive medication from two to four categories had failed (CONQUER): a multicentre, randomised, double-blind, placebo-controlled, phase 3b trial. *The Lancet Neurology*;19:814-25.

41. Marmura MJ, Diener H, Cowan RP, et al Preventive migraine treatment with eptinezumab reduced acute headache medication and headache frequency to below diagnostic thresholds in patients with chronic migraine and medication-overuse headache. *Headache: the journal of head and face pain* 2021;61(9):1421-31.

42. Lipton RB, Tepper SJ, Silberstein SD, et al Reversion from chronic migraine to episodic migraine following treatment with erenumab: Results of a post-hoc analysis of a randomized, 12-week, double-blind study and a 52-week, open-label extension. *Cephalalgia*;41:6-16.

43. Lipton RB, Tepper SJ, Reuter U, et al Erenumab in chronic migraine: Patient-reported outcomes in a randomized double-blind study. *Neurology*;92:E2250-E60.

44. Lipton RB, Dodick DW, Kudrow D, et al Reduction in migraine pain intensity in patients treated with erenumab: A post hoc analysis of two pivotal randomized studies. *Cephalalgia*;41:1458-66.

45. Lipton RB, Dodick DW, Kudrow D, et al Reduction in migraine pain intensity in patients treated with erenumab: a post hoc analysis of two pivotal randomized studies. *Cephalalgia* 2021:9.

46. Lipton RB, Dodick DW, Ailani J, et al Patient-identified most bothersome symptom in preventive migraine treatment with eptinezumab: a novel patient-centered outcome. *Headache: the journal of head and face pain* 2021;61(5):766-76.

47. Lipton RB, Charleston L, Tassorelli C, et al Patient-reported outcomes, health-related quality of life, and acute medication use in patients with a \geq 75% response to eptinezumab: subgroup pooled analysis of the PROMISE trials. *Journal of headache and pain* 2022;23(1):23.

48. Lanteri-Minet M, Goadsby PJ, Reuter U, et al Effect of erenumab on functional outcomes in patients with episodic migraine in whom 2-4 preventives were not useful: results from the LIBERTY study. *Journal of neurology neurosurgery and psychiatry* 2021;92(5):466-72.

49. Kudrow D, Pascual J, Winner PK, et al Vascular safety of erenumab for migraine prevention. *Neurology*;94:E497-E510.

50. Iyengar S, Dodick DW, Goadsby PJ, et al Evaluation of efficacy and safety of LY2951742 in randomized, double-blind, placebo-controlled, singledose and dose-ranging studies in patients with migraine. *Neuropsychopharmacology*;41:S381-S82.

51. Houts CR, Wirth RJ, McGinley JS, et al Determining Thresholds for Meaningful Change for the Headache Impact Test (HIT-6) Total and Item-Specific Scores in Chronic Migraine. *Headache: the journal of head and face pain* 2020;60(9):2003-13.

52. Hirata K, Sakai F, Takeshima T, et al Efficacy and safety of erenumab in Japanese migraine patients with prior preventive treatment failure or concomitant preventive treatment: subgroup analyses of a phase 3, randomized trial. *Journal of headache and pain* 2021;22(1):9.

53. Goadsby PJ, Uwe R, Hallstrom Y, et al A controlled trial of erenumab for episodic migraine. *New England Journal of Medicine*;377:2123-32.

54. Goadsby PJ, Reuter U, Lanteri-Minet M, et al Long-Term Efficacy and Safety of Erenumab: Results From 64 Weeks of the LIBERTY Study. *Neurology* 2021;28

55. Goadsby PJ, Reuter U, Hallstrom Y, et al One-year sustained efficacy of erenumab in episodic migraine: Results of the STRIVE study. *Neurology*;95:e469-e79.

56. Goadsby P, Dodick D, Silberstein S, et al Randomized, double-blind, placebo-controlled trial of ALD403, an anti-CGRP peptide antibody in the prevention of frequent episodic migraine. *Neurology*;83:e40.

57. Goadsby P, Dodick D, Martinez J, et al Onset of efficacy of LY2951742 in migraine prevention: data from a phase IIa, randomized, double-blind, placebo-controlled study of a monoclonal antibody to calcitonin gene-related peptide (a post-hoc analysis). *Postgraduate medicine* 2016;128:83-84.

58. Ferrari MD, Reuter U, Goadsby PJ, et al Two-year efficacy and safety of erenumab in participants with episodic migraine and 2-4 prior preventive treatment failures: results from the LIBERTY study. *Journal of neurology neurosurgery and psychiatry* 2021:9.

59. Ferrari MD, Diener HC, Ning X, et al Fremanezumab versus placebo for migraine prevention in patients with documented failure to up to four migraine preventive medication classes (FOCUS): a randomised, double-blind, placebo-controlled, phase 3b trial. *The Lancet*, 394:1030-40.

60. Dodick DW, Tepper SJ, Ailani J, et al Risk of hypertension in erenumab-treated patients with migraine: Analyses of clinical trial and postmarketing data. *Headache*;61:1411-20.

61. Dodick DW, Tepper SJ, Ailani J, et al Risk of hypertension in erenumab-treated patients with migraine: analyses of clinical trial and postmarketing data. *Headache: the journal of head and face pain* 2021;61(9):1411-20.

62. Dodick DW, Goadsby PJ, Spierings EL, et al Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. *The lancet Neurology* 2014;13(9):885-92.

63. Dodick DW, Goadsby PJ, Silberstein SD, et al Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: A randomised, doubleblind, placebo-controlled, exploratory phase 2 trial. *The Lancet Neurology*;13:1100-07.

64. Diener HC, Marmura MJ, Tepper SJ, et al Efficacy, tolerability, and safety of eptinezumab in patients with a dual diagnosis of chronic migraine and medication-overuse headache: Subgroup analysis of PROMISE-2. *Headache*;61:125-36.

65. Diener HC, Ashina M, Ritter S, et al Erenumab prevents the occurrence of migraine attacks and not just migraine days: post-hoc analyses of a phase III study. *Cephalalgia* 2021;41(11):1262-67.

66. Diener HC. Eptinezumab versus placebo for the prevention of chronic migraines (PROMISE-2). *Psychopharmakotherapie* 2020;27(3):164-65.

67. Diener H, Marmura MJ, Tepper SJ, et al Efficacy, tolerability, and safety of eptinezumab in patients with a dual diagnosis of chronic migraine and medication-overuse headache: subgroup analysis of PROMISE-2. *Headache: the journal of head and face pain* 2021;61(1):125-36.

68. Detke HC, Goadsby PJ, Wang S, et al Galcanezumab in chronic migraine: the randomized, doubleblind, placebo-controlled REGAIN study. *Neurology* 2018;91(24):e2211-e21.

69. Citrome L, Del Rio MS, Dong Y, et al Benefit-Risk Assessment of Galcanezumab Versus Placebo for the Treatment of Episodic and Chronic Migraine Using the Metrics of Number Needed to Treat and Number Needed to Harm. *Advances in therapy* 2021;38(8):4442-60.

70. Broessner G, Reuter U, Bonner JH, et al The Spectrum of Response to Erenumab in Patients With Episodic Migraine and Subgroup Analysis of Patients Achieving >=50%, >=75%, and 100% Response. *Headache*;60:2026-40.

71. Br, es JL, Kudrow D, et al Effects of fremanezumab on the use of acute headache medication and associated symptoms of migraine in patients with episodic migraine. *Cephalalgia* 2020;40(5):470-77.

72. Br, es JL, Diener HC, et al The spectrum of response to erenumab in patients with chronic migraine and subgroup analysis of patients achieving >=50%, >=75%, and 100% response. *Cephalalgia*;40:28-38.

73. Bigal ME, Edvinsson L, Rapoport AM, et al Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: A multicentre, randomised, double-blind, placebo-controlled, phase 2b study. *The Lancet Neurology*;14:1091-100.

74. Bigal ME, Dodick DW, Krymchantowski AV, et al TEV-48125 for the preventive treatment of chronic migraine. *Neurology* 2016;87(1):41-48.

75. Bigal ME, Dodick DW, Krymchantowski AV, et al TEV-48125 for the preventive treatment of chronic migraine: efficacy at early time points. *Neurology* 2016;87(1):41-48.

76. Bigal Marcelo E, Edvinsson L, Rapoport Alan M, et al Safety, tolerability, and efficacy of tev-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. *Lancet neurology* 2015;14(11):1091-100.

77. Bigal M, Lipton RB, Burstein R, et al A multicenter, randomized, double-blind, double-dummy, placebo-controlled, parallel group, multi dose study comparing subcutaneous TEV-48125 to placebo for the preventive treatment of high frequency episodic migraine. *Headache*;5:251-52.

78. Bangs ME, Kudrow D, Wang S, et al Safety and tolerability of monthly galcanezumab injections in patients with migraine: Integrated results from migraine clinical studies. *BMC Neurology*;20

79. Ayer DW, Skljarevski V, Ford JH, et al Measures of Functioning in Patients With Episodic Migraine: findings From a Double-Blind, Randomized, Placebo-Controlled Phase 2b Trial With Galcanezumab. *Headache* 2018;58(8):1225-35.

80. Aurora SK, Ruff DD, Zhang Q, et al Factors associated with significant reduction in migraine headache days: a post hoc analysis of phase 3 placebo-controlled trials of patients with episodic and chronic migraine treated with galcanezumab. *Journal of headache and pain* 2018

81. Ashina M, Tepper SJ, Br, et al Efficacy of erenumab (AMG 334) in chronic migraine patients with prior prophylactic treatment failure: subgroup analysis of the phase 2, randomised, double-blind, placebo-controlled study. *Journal of headache and pain* 2017;18(1)

82. Ashina M, Tepper S, Br, et al Efficacy and safety of erenumab (AMG334) in chronic migraine patients with prior preventive treatment failure: A subgroup analysis of a randomized, double-blind, placebo-controlled study. *Cephalalgia*;38:1611-21.

83. Ashina M, Kudrow D, Reuter U, et al Long-term tolerability and nonvascular safety of erenumab, a novel calcitonin gene-related peptide receptor antagonist for prevention of migraine: A pooled analysis of four placebo-controlled trials with long-term extensions. *Cephalalgia*;39:1798-808.

84. Ashina M, Goadsby PJ, Reuter U, et al Long-term efficacy and safety of erenumab in migraine prevention: results from a 5-year, open-label treatment phase of a randomized clinical trial. *European journal of neurology* 2019:10.

85. Ashina M, Goadsby PJ, Reuter U, et al Long-term safety and tolerability of erenumab: Three-plus year results from a five-year open-label extension study in episodic migraine. *Cephalalgia*;39:1455-64.

86. Ashina M, Goadsby PJ, Dodick DW, et al Assessment of Erenumab Safety and Efficacy in Patients with Migraine with and without Aura: a Secondary Analysis of Randomized Clinical Trials. *JAMA neurology* 2021

87. Ashina M, Dodick D, Goadsby PJ, et al Erenumab (AMG 334) in episodic migraine. *Neurology*;89:1237-43.

88. Anonymous. CORRIGENDUM to 'Anti-CGRP monoclonal antibodies for migraine prevention: A systematic review and likelihood to help or harm analysis' (Cephalalgia, (2021), 41, 7, (851-864), 10.1177/0333102421989601). *Cephalalgia*;42:90.

89. Alpuente A, Torres-Ferrus M, Caronna E, et al Correlation between patient-related outcome scales (PROs) and CGRP-mAbs treatment response at 3-months in migraine patients. *Cephalalgia* 2021;41:263.

90. Alpuente A, Torres-Ferrus M, Caronna E, et al Which patient-related outcome scale better reflects continuing treatment with CGRP-mAbs at 3-months in migraine patients? *Cephalalgia* 2021;41:264.

91. Ailani J, Pearlman E, Zhang Q, et al Positive response to galcanezumab following treatment failure to onabotulinumtoxinA in patients with migraine: post hoc analyses of three randomized double-blind studies. *European Journal of Neurology*;27:542-49.

92. Ailani J, Kuruppu D, Rettiganti M, et al Does wearing off of efficacy occur in galcanezumab-treated patients at the end of the monthly treatment cycle: A post hoc analysis of four phase 3 randomized trials. *Headache*;61:153-54.

93. Ailani J, Andrews JS, Rettiganti M, et al Impact of galcanezumab on total pain burden: findings from phase 3 randomized, double-blind, placebo-controlled studies in patients with episodic or chronic migraine (EVOLVE-1, EVOLVE-2, and REGAIN trials). *Journal of headache and pain* 2020;21(1):1-9.

Unable to access (k=0)

Nil

Trial data not included in analyses (k=17)

1. Hirata K, Sakai F, Takeshima T, et al Efficacy and safety of erenumab in Japanese migraine patients with prior preventive treatment failure or concomitant preventive treatment: subgroup analyses of a phase 3, randomized trial. Journal of headache and pain 2021;22(1):110.

2. Tepper SJ, Ailani J, Ford JH, et al Effects of Galcanezumab on Health-Related Quality of Life and Disability in Patients with Previous Failure of 2–4 Migraine Preventive Medication Categories: Results from a Phase IIIb Randomized, Placebo-Controlled, Multicenter Clinical Trial (CONQUER). Clinical Drug Investigation 2022

3. Goadsby PJ, Reuter U, Lanteri-Minet M, et al Long-term Efficacy and Safety of Erenumab Results From 64 Weeks of the LIBERTY Study. Neurology 2021;96(22):E2724-E35.

4. Lipton RB, Dodick DW, Ailani J, et al Patient-identified most bothersome symptom in preventive migraine treatment with eptinezumab: a novel patient-centered outcome. Headache 2021;61(5):766-76.

5. Ford JH, Stauffer VL, McAllister P, et al Functional impairment and disability among patients with migraine: evaluation of galcanezumab in a long-term, open-label study. Quality of life research 2021;30(2):455-64.

6. Tepper SJ, Diener HC, Ashina M, et al Erenumab in chronic migraine with medication overuse: subgroup analysis of a randomized trial. Neurology 2019;92(20):e2309-e20.

7. Reuter U, Lucas C, Dolezil D, et al Galcanezumab in Patients with Multiple Previous Migraine Preventive Medication Category Failures: Results from the Open-Label Period of the CONQUER Trial. Advances in therapy 2021;38(11):5465-83.

8. Spierings ELH, Ning X, Ramirez Campos V, et al Improvements in quality of life and work productivity with up to 6 months of fremanezumab treatment in patients with episodic and chronic migraine and documented inadequate response to 2 to 4 classes of migraine-preventive medications in the phase 3b FOCUS study. Headache 2021;61(9):1376-86.

9. Ashina M, Cohen JM, Galic M, et al Efficacy and safety of fremanezumab in patients with episodic and chronic migraine with documented inadequate response to 2 to 4 classes of migraine preventive medications over 6 months of treatment in the phase 3b FOCUS study. Journal of headache and pain 2021;22(1):68.

10. Sakai F, Suzuki N, Ning X, et al Long-Term Safety and Tolerability of Fremanezumab for Migraine Preventive Treatment in Japanese Outpatients: A Multicenter, Randomized, Open-Label Study. Drug Safety 2021;44:1355-64.

11. Ferrari MD, Reuter U, Goadsby PJ, et al Two-year efficacy and safety of erenumab in participants with episodic migraine and 2-4 prior preventive treatment failures: results from the LIBERTY study. Journal of neurology, neurosurgery, and psychiatry 2022;93:254-62.

12. Hirata K, Takeshima T, Sakai F, et al A long-term open-label safety study of galcanezumab in Japanese patients with migraine. Expert opinion on drug safety 2021;20(6):721-33.

13. Sakai F, Takeshima T, Tatsuoka Y, et al Long-term efficacy and safety during open-label erenumab treatment in Japanese patients with episodic migraine. Headache 2021;61:653-61.

14. Tepper SJ, Ashina M, Reuter U, et al Long-term safety and efficacy of erenumab in patients with chronic migraine: results from a 52-week, open-label extension study. Cephalalgia 2020;40(6):543-53.

15. Ashina M, Goadsby PJ, Reuter U, et al Long-term efficacy and safety of erenumab in migraine prevention: results from a 5-year, open-label treatment phase of a randomized clinical trial. European journal of neurology 2021;28(5):1716-25.

16. Ashina M, Goadsby PJ, Reuter U, et al Long-term safety and tolerability of erenumab: three-plus year results from a five-year open-label extension study in episodic migraine. Cephalalgia 2019;39(11):1455-64.

17. Ashina M, Dodick D, Goadsby PJ, et al Erenumab (AMG 334) in episodic migraine: interim analysis of an ongoing open-label study. Neurology 2017;89(12):1237-43.

Postface: List of excluded publications at full text (updated search)

Incorrect population (k=1)

1. Overeem, L.H., et al, Effect of antibody switch in non-responders to a CGRP receptor antibody treatment in migraine: A multi-center retrospective cohort study. Cephalalgia : an international journal of headache, 2022. 42(4): p. 291-301.

NOTE: Non-randomised studies of interventions (NRSI) assessed for eligibility to answer the Additional Question(s) (see Section 6.1 of HTA Protocol) regarding 'switching of CGRP-antagonists'.

Incorrect intervention (k=2)

1. Ojo, A.T., et al, Persistence and switching patterns of migraine prophylactic medications in Canada: A retrospective claims analysis comparing adherence and evaluating the economic burden of illness. Journal of Pharmacy and Pharmaceutical Sciences, 2022. 25: p. 402-417.

NOTE: NRSI assessed for eligibility to answer the Additional Question(s) (see Section 6.1 of HTA Protocol) regarding 'switching of CGRP-antagonists'.

2. Foster, S.A., et al, Direct cost and healthcare resource utilization of patients with migraine before treatment initiation with calcitonin gene-related peptide monoclonal antibodies by the number of prior preventive migraine medication classes. Current medical research and opinion, 2022. 38(5): p. 653-660.

Incorrect comparator (k=0)

Nil

Incorrect outcome (k=4)

1. Nsaka, M., et al, Real-world evidence following a mandatory treatment break after a 1-year prophylactic treatment with calcitonin gene-related peptide (pathway) monoclonal antibodies. Brain and Behavior, 2022. 12(7): p. e2662.

2. Tobin, J., et al, Annual indirect cost savings in patients with episodic or chronic migraine: post-hoc analyses from multiple galcanezumab clinical trials. Journal of Medical Economics, 2022. 25(1): p. 630-639.

3. Tobin, J.A., et al, Reductions in acute medication use and healthcare resource utilization in patients with chronic migraine: a secondary analysis of a phase 3, randomized, double-blind, placebo-controlled

study of galcanezumab with open-label extension (REGAIN). Journal of Medical Economics, 2022. 25(1): p. 1030-1038.

4. Varnado, O.J., et al, Annual indirect costs savings in patients with episodic or chronic migraine: a post-hoc analysis of phase 3 galcanezumab clinical trials in the United States. Journal of medical economics, 2023: p. 1-15.

5. Varnado, O.J., et al, Health care resource utilization and costs associated with treatment among patients initiating calcitonin gene-related peptide inhibitors vs other preventive migraine treatments in the United States. Journal of Managed Care and Specialty Pharmacy, 2022. 28(8): p. 818-829.

Incorrect publication type (k=0)

Nil

Incorrect study design (k=11)

1. Tepper, S.J., et al, Effects of Galcanezumab on Health-Related Quality of Life and Disability in Patients with Previous Failure of 2-4 Migraine Preventive Medication Categories: Results from a Phase IIIb Randomized, Placebo-Controlled, Multicenter Clinical Trial (CONQUER). Clinical Drug Investigation, 2022. 42(3): p. 263-275.

2. Pozo-Rosich, P., et al, Long-term treatment with galcanezumab in patients with chronic migraine: results from the open-label extension of the REGAIN study. Current Medical Research and Opinion, 2022. 38(5): p. 731-742.

3. Ashina, M., et al, Long-term efficacy and safety of erenumab in patients with chronic migraine in whom prior preventive treatments had failed: A subgroup analysis. Headache, 2022. 62(5): p. 624-633.

4. Cowan, R.P., et al, Quantity changes in acute headache medication use among patients with chronic migraine treated with eptinezumab: subanalysis of the PROMISE-2 study. Journal of Headache and Pain, 2022. 23(1): p. 115.

5. McAllister, P., et al, Reduction in migraine-associated burden after eptinezumab treatment in patients with chronic migraine. Cephalalgia, 2022. 42(10): p. 1005-1012.

6. Starling, A.J., et al, Eptinezumab improved patient-reported outcomes in patients with migraine and medication-overuse headache: Subgroup analysis of the randomized PROMISE-2 trial. Headache, 2023.

7. Lampl, C., et al, Efficacy and quality-of-life improvements with fremanezumab treatment in patients with difficult-to-treat migraine with associated neurological dysfunction. European Journal of Neurology, 2022. 29(7): p. 2129-2137.

8. Chowdhury, D., et al, Efficacy and Tolerability of Erenumab for Prevention of Episodic Migraine in India. Annals of Indian Academy of Neurology, 2022. 25(3): p. 433-440.

9. Ailani, J., et al, Effect of Galcanezumab on Total Pain Burden in Patients Who Had Previously Not Benefited from Migraine Preventive Medication (CONQUER Trial): A Post Hoc Analysis. Advances in Therapy, 2022. 39(10): p. 4544-4555.

10. Ambrosini, A., et al, Changes in acute headache medication use and health care resource utilization: Results from a randomized, double-blind, placebo-controlled clinical trial evaluating galcanezumab in adults with treatment-resistant migraine (CONQUER). Journal of Managed Care and Specialty Pharmacy, 2022. 28(6): p. 645-656.

11. Ehrlich, M., et al, Erenumab versus topiramate: post hoc efficacy analysis from the HER-MES study. Journal of Headache and Pain, 2022. 23(1): p. 141.

NOTE: These publications that have been excluded as incorrect study design are related to RCTs which have already been included in the HTA report, however have been deemed to not add further value to the current data/results that have been reported.

Incorrect language (k=0)

Nil

Incorrect date limit (k=0)

Nil

Duplicates (k=2)

1. Ferrari, M.D., et al, Two-year efficacy and safety of erenumab in participants with episodic migraine and 2-4 prior preventive treatment failures: results from the LIBERTY study. Journal of neurology, neurosurgery, and psychiatry, 2022. 93(3): p. 254-262.

2. Reuter, U., et al, Erenumab versus topiramate for the prevention of migraine - a randomised, double-blind, active-controlled phase 4 trial. Cephalalgia : an international journal of headache, 2022. 42(2): p. 108-118.

Note: Publications identified through original literature search (up to 9 March 2022).

Unable to access (i.e. embargo) (k=0)

Nil

Appendix E: Minimum clinically important differences and improvements for outcomes of interest

A non-systematic targeted search was conducted to identify minimum clinically important differences (MCIDs), minimum important change (MIC), minimal important differences (MIDs) and minimal clinically important improvement (MCII) related to the outcomes of interest (see *Section 5.4.1*). It was planned to use the identified MCID, MICs and MIDs (*Table A19*) as a guide, not as a complete assessment of the literature. The MIDs, MICs and MCID generally relate to headache frequency (i.e. MHDs, response rate) and health-related and migraine-specific quality of life (i.e. HIT-6, MIDAS, MSQ v2.1, VAS). The applicability of these MIDs, MICs and MCID to the current HTA report is currently uncertain. There are differences in population demographics, diagnosis and interventions, so caution must be taken when extrapolating the MIDs, MICs and MCID to the outcomes reported.

Outcome measure	MIC/MID/MCII/MCID	Study type	Population demographics	Author, year	
Headache frequenc	y				
Headache days	Between-group difference: 1 day per month MID	Clinical study	Mixed headache conditions (incl. episodic and chronic migraine)	Silberstein et al 2010 ⁵	
Response rate	50% reduction from baseline MID	Guidance document	Episodic migraine	Tfelt-Hansen et al 2000 ⁶	
	30% reduction from baseline MID	Guidance document	Chronic migraine	Silberstein et al 2008 ⁷	
HRQoL					
HIT-6	Within-group improvements: ≥5.0 points Between-group difference: ≥2.3 points MID	Guidance document Clinimetric assessment	Chronic migraine Chronic daily headache	Bayliss et al 2002 ⁸ Coeytaux et al 2006 ⁹	
	Within-group change: -2.5 points (mean change) -6 points (ROC curve) Between-group difference: -1.5 points MIC	Clinimetric assessment	Migraine	Smelt et al 2013 ¹⁰	
MIDAS	4.5 points MIC	Clinical study	High frequency episodic migraine & chronic migraine	Carvalho et al 2022 ¹¹	

Table A19 Minimal clinically important differences/improvements for outcomes of interest

MSQ v2.1 Domain: RR	Between-group mean: 3.2 MID	Clinimetric assessment	Migraine	Cole et al 2009 ¹²
	Within-group mean: 10.9 MID	Clinical study (RCT)	Chronic migraine	Dodick et al 2007 ¹³
MSQ v2.1 Domain: RP	Between-group mean: 4.6 MID	Clinimetric assessment	Migraine	Cole et al 2009 ¹²
	Within-group mean: 8.3 MID	Clinical study (RCT)	Chronic migraine	Dodick et al 2007 ¹³
MSQ v2.1 Domain: EF	Between-group mean: 7.5 MID	Clinimetric assessment	Migraine	Cole et al 2009 ¹²
	Within-group mean: 12.2 MID	Clinical study (RCT)	Chronic migraine	Dodick et al 2007 ¹³
VAS	1.5-3.2 points (cm) 30% pain reduction MCID	Clinimetric assessment	Chronic pain	Calixtre et al 2020 ¹⁴

cm = centimeter, **EF** = emotional function, **HIT-6** = Headache Impact Test, **HRQoL** = health-related quality of life, **incl.** = including, **MCID** = minimum clinically important difference, **MCII** = minimal clinically important improvement, **MIC** = minimum important change, **MID** = minimal important differences, **MIDAS** = Migraine Disability Assessment Scale, **MSQ v2.1** = Migraine-Specific Quality of Life questionnaire version 2.1, **RCT** = randomised controlled trial, **ROC** = receiver operating characteristic; **RP** = role preventive, **RR** = role restrictive, **VAS** = visual analogue scale.

Appendix F: Additional Study Characteristics

Table A20 Study characteristics: Participant inclusion/exclusion criteria conditions for concomitant preventative migraine medication and previous

Trial ID	Concomitant preventative migraine medications	Inclusion/exclusion criteria based on previous migraine preventative treatment failure
Erenumab		
ARISE 2018 ¹⁵ NCT02483585 ¹⁶	 Included (1 medication permitted; stable A dose within 2 months before the start of BL phase and throughout the study): Divalproex sodium, sodium valproate, topiramate, carbamazepine, gabapentin, beta blockers, tricyclic antidepressants, enlafaxine, desvenlafaxine, duloxetine, milnacipran, flunarizine, verapamil, lomerizine, lisinopril, candesartan, clonidine, guanfacine, cyproheptadine, methysergide, pizotifen, butterbur, feverfew, magnesium (≥600 mg/day), riboflavin (≥100 mg/day) 	Exclusion criteria: No therapeutic response in migraine prevention after an adequate therapeutic trial of >2 of the following medication categories: Category 1: Divalproex sodium, sodium valproate; Category 2: Topiramate; Category 3: Beta blockers; Category 4: Tricyclic antidepressants; Category 5: Serotonin-norepinephrine reuptake inhibitors; Category 6: Flunarizine, verapamil
EMPOwER 2021 ¹⁷ NCT03333109	No concomitant preventative medications allowed	Exclusion criteria: No therapeutic response with more than 2 of the following 7 medication categories for prophylactic treatment of migraine after an adequate therapeutic trial: Category 1: Divalproex sodium, sodium valproate; Category 2: Topiramate; Category 3: Beta blockers (e.g. atenolol, bisoprolol, metoprolol, nadolol, nebivolol, pindolol, propranolol, timolol); Category 4: Tricyclic antidepressants (e.g. amitriptyline, nortriptyline, protriptyline); Category 5: Serotonin-norepinephrine reuptake inhibitors (e.g. venlafaxine, desvenlafaxine, duloxetine, milnacipran); Category 6: Flunarizine, verapamil; Category 7: Lisinopril, candesartan.
LIBERTY 2018 ¹⁸ NCT03096834 ¹⁹⁻²²	No concomitant preventative medications allowed	Inclusion criteria: Failed 2-4 prior migraine prophylaxis treatments out of propranolol/ metoprolol, topiramate, flunarizine, valproate/divalproex, amitriptyline, venlafaxine, lisinopril, candesartan, locally approved products (e.g. oxeterone or pizotifen) OR Failed one AND failed OR not suitable A for a second of the following: - Propranolol OR metoprolol - Topiramate - Flunarizine - Failed or not suitable A for valproate or divalproex

migraine preventative treatment failure

Trial ID	Concomitant preventative migraine medications	Inclusion/exclusion criteria based on previous migraine preventative treatment failure
		Exclusion criteria: Failed more than 4 prior migraine prophylaxis treatments out of propranolol/metoprolol, topiramate, flunarizine, valproate/divalproex, amitriptyline, venlafaxine, lisinopril, candesartan, locally approved products (e.g. oxeterone or pizotifen)
Sakai et al 2019 ²³ NCT02630459 ^{24,25}	 Included (1 medication permitted; stable A dose within 2 months before the start of BL phase and throughout the study): Divalproex sodium, sodium valproate, topiramate, carbamazepine, gabapentin, beta blockers, tricyclic antidepressants, venlafaxine, desvenlafaxine, duloxetine, milnacipran, flunarizine, verapamil, lomerizine, lisinopril, candesartan, clonidine, guanfacine, cyproheptadine, methysergide, pizotifen, butterbur, feverfew, magnesium (≥ 600 mg/day), riboflavin (≥ 100 mg/day) 	 Exclusion criteria: No therapeutic response in migraine prevention after an adequate therapeutic study of >2 of the following medication categories: Category 1: Divalproex sodium, sodium valproate; Category 2: Topiramate; Category 3: Beta blockers; Category 4: Tricyclic antidepressants; Category 5: Serotonin-norepinephrine reuptake inhibitors; Category 6: Flunarizine, verapamil, lomerizine; Category 7: Lisinopril, candesartan
STRIVE 2017 ²⁶ NCT02456740 ²⁷⁻³⁴	 Included (1 medication permitted; stable A dose within 2 months before the start of BL phase and throughout the study): Divalproex sodium, sodium valproate, topiramate, carbamazepine, gabapentin, beta blockers, tricyclic antidepressants, venlafaxine, desvenlafaxine, duloxetine, milnacipran, flunarizine, verapamil, lomerizine, lisinopril, candesartan, clonidine, guanfacine 	Exclusion criteria: No therapeutic response in migraine prevention after an adequate therapeutic trial of >2 of the following medication categories: Category 1: Divalproex sodium, sodium valproate; Category 2: Topiramate; Category 3: Beta blockers; Category 4: Tricyclic antidepressants; Category 5: Serotonin-norepinephrine reuptake inhibitors; Category 6: Flunarizine, verapamil; Category 7: Lisinopril, candesartan
Sun et al 2016 ³⁵ NCT01952574 ³⁶⁻³⁹	No concomitant preventative medications allowed.	 Exclusion criteria: Patients were excluded if they had no response for at least 6 weeks to >2 of the following preventive treatment categories: 1) divalproex sodium, sodium valproate; 2) topiramate; 3) beta blockers; 4) tricyclic antidepressants; 5) venlafaxine, desvenlafaxine, duloxetine, milnacipran; 6) flunarizine, verapamil; 7) lisinopril, candesartan; 8) butterbur, feverfew, magnesium (≥600 mg/day), riboflavin (≥100 mg/day)
Tepper et al 2017 ⁴⁰ NCT02066415 ⁴¹⁻⁴⁸	No concomitant preventative medications allowed.	Exclusion criteria: Patients were excluded if they had no therapeutic response in migraine prevention after an adequate therapeutic trial of >3 of the following medication categories: Category 1: Divalproex sodium, sodium valproate; Category 2: Topiramate; Category 3: Beta blockers; Category 4: Tricyclic antidepressants; Category 5: Flunarizine or verapamil; Category 6: Venlafaxine or desvenlafaxine, duloxetine or milnacipran; Category 7: Botulinum toxin; Category 8: Lisinopril or candesartan
HER-MES 2022 ⁴⁹ NCT03828539 ⁵⁰	No concomitant preventative medications allowed.	 Inclusion criteria: Patients were eligible if they had not received prior prophylactic migraine treatment (naive) or, due to lack of efficacy or tolerability, had failed or had not been suitable A for up to three previous prophylactic treatments from the following: Metoprolol/propranolol, Amitriptyline, Flunarizine

Trial ID	Concomitant preventative migraine medications	Inclusion/exclusion criteria based on previous migraine preventative treatment failure
Takeshima et al 2021 ⁵¹ NCT03812224 ^{52,53}	 Included (1 medication permitted; >2 months prior to BL and throughout the study): Divalproex sodium, sodium valproate, topiramate, carbamazepine or gabapentin, all beta blockers (e.g. metoprolol, propranolol, timolol, atenolol, nadolol, nebivolol, pindolol, bisoprolol), all tricyclic antidepressants (e.g. amitriptyline, nortriptyline, protriptyline), venlafaxine, desvenlafaxine, duloxetine or milnacipran, flunarizine, verapamil, lomerizine, lisinopril, candesartan, clonidine or guanfacine, cyproheptadine, methysergide, pizotifen, butterbur, feverfew, magnesium (≥600 mg/day), riboflavin (≥100 mg/day) Excluded if used daily for migraine prevention (>2 months prior to BL): Fluoxetine, fluvoxamine, acetazolamide, picotamide, cyclandelate, ergot-derivatives, steroids, triptans, nicardipine, nifedipine, nimodipine 	Exclusion criteria: No therapeutic response with ≥3 of the following 8 medication categories for prophylactic treatment of migraine after an adequate therapeutic trial: Category 1: Divalproex sodium, sodium valproate; Category 2: Topiramate; Category 3: Beta blockers (e.g. atenolol, bisoprolol, metoprolol, nadolol, nebivolol, pindolol, propranolol, timolol); Category 4: Tricyclic antidepressants (e.g. amitriptyline, nortriptyline, protriptyline); Category 5: Serotonin-norepinephrine reuptake inhibitors (e.g. venlafaxine, desvenlafaxine, duloxetine, milnacipran); Category 6: Flunarizine, verapamil, lomerizine; Category 7: Lisinopril, candesartan; Category 8: Botulinum toxin
Eptinezumab		
PROMISE-1 202054 NCT0255989555,56	No concomitant preventative medications allowed.	NR
Dodick et al 2019 ⁵⁷ NCT02275117	No concomitant preventative medications allowed.	NR
PROMISE-2 202058 NCT0297415359-64	 Included (stable A dose for at least 3 months prior to screening, with no alterations through week 24): Divalproex sodium, sodium valproate, topiramate, gabapentin, metoprolol, propranolol, timolol, atenolol, nadolol, bisoprolol, amitriptyline, venlafaxine, cinnarizine, fluoxetine, lamotrigine, flunarizine, verapamil, pizotifen, butterbur, feverfew 	NR
Fremanezumab		
Bigal et al 2015b ⁶⁵ NCT02025556 ^{66,67}	 Included for 30% of population (1 medication; stable A dose for at least 2 months prior to beginning trial and throughout the study): beta-blockers: atenolol, propranolol, metoprolol, nadolol, timolol calcium channel blocker/benzocycloheptene: flunarizine, pizotifen antidepressants: amitriptyline, venlafaxine, nortriptyline, duloxetine anti-epileptic medications: topiramate, valproate, divalproate 	Exclusion criteria: Previously failed (lack of efficacy) ≥2 of the following clusters for treatment of episodic migraine or chronic migraine after adequate therapeutic trial defined as use for at least 3 months at accepted migraine therapeutic doses: Cluster A: divalproex sodium, sodium valproate; Cluster B: flunarizine, pizotifen; Cluster C: amitriptyline, nortriptyline, venlafaxine, duloxetine; Cluster D: atenolol, nadolol, metoprolol, propranolol, timolol

Trial ID	Concomitant preventative migraine medications	Inclusion/exclusion criteria based on previous migraine preventative treatment failure
HALO EM 2018 ⁶⁸ NCT02629861 ^{69,70}	 Included for 30% of population (1 medication; stable A dose for at least 2 months prior to beginning trial and throughout the study): beta-blockers: atenolol, propranolol, metoprolol, nadolol, timolol calcium channel blocker/benzocycloheptene: flunarizine, pizotifen antidepressants: amitriptyline, venlafaxine, nortriptyline, duloxetine anti-epileptic medications: topiramate, valproate, divalproate 	Exclusion criteria: Previously failed (lack of efficacy) ≥2 of the following clusters for treatment of episodic migraine or chronic migraine after adequate therapeutic trial defined as use for at least 3 months at accepted migraine therapeutic doses: Cluster A: divalproex sodium, sodium valproate; Cluster B: flunarizine, pizotifen; Cluster C: amitriptyline, nortriptyline, venlafaxine, duloxetine; Cluster D: atenolol, nadolol, metoprolol, propranolol, timolol
Sakai et al 2021b ⁷¹ NCT03303092 ⁷²	 Included for 30% of population (1 medication; stable A dose for at least 2 months prior to beginning trial and throughout the study): beta-blockers: atenolol, propranolol, metoprolol, nadolol, timolol calcium channel blocker/benzocycloheptene: flunarizine, pizotifen antidepressants: amitriptyline, venlafaxine, nortriptyline, duloxetine anti-epileptic medications: topiramate, valproate, divalproate 	Exclusion criteria: Previously failed (lack of efficacy) ≥2 of the following clusters for treatment of episodic migraine or chronic migraine after use for at least 3 months at accepted migraine therapeutic doses: Cluster A: topiramate, divalproex sodium, sodium valproate; Cluster B: lomerizine, flunarizine, pizotifen; Cluster C: amitriptyline, nortriptyline, venlafaxine, duloxetine; Cluster D: atenolol, nadolol, metoprolol, propranolol, timolol
Bigal et al 2015a ⁷³ NCT02021773 ^{74,75}	Included (≤2 medications; stable A dose for at least 2 months prior to beginning trial and throughout the study): - E.g. topiramate, propranolol	Exclusion criteria: Failed >2 medication categories or >3 preventive medications (within two medication categories) due to lack of efficacy for prophylactic treatment of episodic migraine or chronic migraine after an adequate therapeutic trial.
HALO CM 2017 ⁷⁶ NCT02621931 ⁷⁷⁻⁸²	 Included for 30% of population (1 medication; stable A dose for at least 2 months prior to beginning trial and throughout the study): beta-blockers: atenolol, propranolol, metoprolol, nadolol, timolol calcium channel blocker/benzocycloheptene: flunarizine, pizotifen antidepressants: amitriptyline, venlafaxine, nortriptyline, duloxetine anti-epileptic medications: topiramate, valproate, divalproate 	Exclusion criteria: Previously failed (lack of efficacy) ≥2 of the following clusters for treatment of episodic migraine or chronic migraine after adequate therapeutic trial defined as use for at least 3 months at accepted migraine therapeutic doses: Cluster A: divalproex sodium, sodium valproate; Custer B: flunarizine, pizotifen; Cluster C: amitriptyline, nortriptyline, venlafaxine, duloxetine; Cluster D: atenolol, nadolol, metoprolol, propranolol, timolol
Sakai et al 2021a ⁸³ NCT03303079 ⁸⁴	 Included in 30% of population (1 medication; stable A dose for at least 2 months prior to beginning trial and throughout the study): beta-blockers: atenolol, propranolol, metoprolol, nadolol, timolol calcium channel blocker/benzocycloheptene: flunarizine, pizotifen antidepressants: amitriptyline, venlafaxine, nortriptyline, duloxetine anti-epileptic medications: topiramate, valproate, divalproate 	Exclusion criteria: Patients who have previously failed (lack of efficacy) ≥2 of the following clusters for treatment of episodic migraine or chronic migraine after use for at least 3 months at accepted migraine therapeutic doses: Cluster A: topiramate, divalproex sodium, sodium valproate; Cluster B: lomerizine, flunarizine, pizotifen; Cluster C: amitriptyline, nortriptyline, venlafaxine, duloxetine; Cluster D: atenolol, nadolol, metoprolol, propranolol, timolol
FOCUS 2019 ⁸⁵ NCT03308968 ^{86,87}	 Exclusion criteria: At the time of screening visit, receiving any preventive migraine medications, regardless of the medical indication for >5 days and expects to continue with these medications. 	Inclusion criteria : At the time of screening, documented inadequate response to 2-4 classes of prior preventive migraine medications within the past 10 years (in medical chart or by treating physician's confirmation)

Trial ID	Concomitant preventative migraine medications	Inclusion/exclusion criteria based on previous migraine preventative treatment failure	
Galcanezumab			
Dodick et al 2014a ⁸⁸ NCT01625988	No concomitant preventative medications allowed.	Exclusion criteria : Failure to respond to >2 adequately dosed (i.e. maximum tolerated dose by the patient for a sufficient duration) approved migraine prevention treatments.	
EVOLVE-1 2018 ⁸⁹ NCT02614183 ⁹⁰	No concomitant preventative medications allowed.	Exclusion criteria : Failure to respond to ≥3 adequately dosed migraine preventive treatments from different classes (i.e. maximum tolerated dose for at least 2 months). Failure to respond due to tolerability issues is not considered a treatment failure.	
EVOLVE-2 201891 NCT0261419692	No concomitant preventative medications allowed.	Exclusion criteria : Failure to respond to ≥3 adequately dosed migraine preventive treatments from different classes (i.e. maximum tolerated dose for at least 2 months). Failure to respond due to tolerability issues is not considered a treatment failure.	
Sakai et al 2020a ⁹³ NCT02959177 ⁹⁴⁻⁹⁷	No concomitant preventative medications allowed.	Exclusion criteria : Failure to respond to ≥3 adequately dosed migraine preventive treatments from different classes (i.e. maximum tolerated dose for at least 2 months). Failure to respond due to tolerability issues is not considered a treatment failure.	
Skljarevski et al 2018 ⁹⁸ NCT02163993 ⁹⁹⁻¹⁰¹	No concomitant preventative medications allowed.	Exclusion criteria : Failure to respond to ≥2 effective migraine preventive treatments as defined by the American Academy of Neurology/American Headache Society treatment guidelines level A and B evidence.	
REGAIN 2018 ¹⁰² NCT02614261 ^{103,104}	Included (stable A dose for at least 2 months prior to beginning trial and throughout the study): - Topiramate or propranolol	Exclusion criteria : Failure to respond to ≥3 adequately dosed migraine preventive treatments from different classes (i.e. maximum tolerated dose for at least 2 months). Failure to respond due to tolerability issues is not considered a treatment failure.	
CGAJ 2018 ¹⁰⁵ NCT02614287 ^{66,67}	No concomitant preventative medications allowed.	Exclusion criteria : Failure to respond to ≥3 adequately dosed migraine preventive treatments from different classes (i.e. maximum tolerated dose for at least 2 months). Failure to respond due to tolerability issues is not considered a treatment failure.	
CONQUER 2020 ¹⁰⁶ NCT03559257 ^{107,108}	No concomitant preventative medications allowed.	 Inclusion criteria: Previous failure to 2-4 migraine preventive medication categories in the past 10 years from the following list due to inadequate efficacy (i.e. maximum tolerated dose for at least 2 months) and/or safety/tolerability reason: a) propranolol or metoprolol; b) topiramate; c) valproate or divalproex; d) amitriptyline; e) flunarizine; f) candesartan; g) botulinum toxin A or B (if documented that botulinum toxin was taken for chronic migraine); h) medication locally approved for prevention of migraine 	

BL = baseline, **ID** = identification.

Postface: Additional Study Characteristics (updated search)

Table A21 Study characteristics: Participant inclusion/exclusion criteria conditions for concomitant preventative migraine medication and previous

Trial ID	Concomitant preventative migraine medications	Inclusion/exclusion criteria based on previous migraine preventative treatment failure
Erenumab		
DRAGON 2022 ¹⁰⁹ NCT03867201	No concomitant preventative medications allowed	Exclusion criteria: Previously failed (lack of efficacy/tolerability) ≥3 of the following categories for treatment of episodic migraine or chronic migraine after adequate therapeutic trial, defined as use for ≥6 weeks at accepted migraine therapeutic doses: Category 1: divalproex sodium, sodium valproate; Category 2: topiramate; Category 3: beta blockers (e.g. atenolol, bisoprolol, metoprolol, nadolol, nebivolol, pindolol, propranolol, timolol), Category 4: tricyclic antidepressants (e.g. amitriptyline, nortriptyline, protriptyline); Category 5: flunarizine, verapamil, cinnarizine; Category 6: serotonin-norepinephrine reuptake inhibitors (e.g. venlafaxine, desvenlafaxine, duloxetine, milnacipran); Category 7: botulinum toxin; Category 8: lisinopril, candesartan; Category 9: pregabalin, gabapentin; Category 10: zonisamide; Category 11: memantine; Category 12: pizotifen.
Eptinezumab		
DELIVER 2022 ¹¹⁰ NCT04418765 ¹¹¹	No concomitant preventative medications allowed	 Inclusion criteria: Previous failure in the past 10 years due to inadequate efficacy (i.e. maximum tolerated dose for at least 3 months) and/or safety/tolerability reasons of 2–4 migraine preventive medication categories from the following list: a) propranolol or metoprolol; b) topiramate; c) valproate or divalproex; d) amitriptyline; e) flunarizine; f) candesartan; g) botulinum toxin A or B (if documented that botulinum toxin was taken for chronic migraine).
Galcanezumab		
PERSIST 2022 ¹¹² NCT03963232	No concomitant preventative medications allowed	Exclusion criteria: Failure to respond to ≥3 adequately dosed migraine preventive treatments from different classes (i.e. maximum tolerated dose for at least 2 months). Medications defined as migraine preventive treatments are – tricyclic antidepressants: amitriptyline, serotonin-norepinephrine reuptake inhibitor: venlafaxine; anti-epileptic drugs: valproic acid and topiramate; beta-blockers: metoprolol, propranolol, timolol, atenolol, nadolol; calcium channel blocker: flunarizine; triptans: frovatriptan, naratriptan, and zolmitriptan; traditional Chinese medicine/herbal - medications may not be exhausted and more details refer to the medication

migraine preventative treatment failure (updated search)

Trial ID	Concomitant preventative migraine medications	Inclusion/exclusion criteria based on previous migraine preventative treatment failure
		list: petasites/butterbur, toutongling, and duliang; others locally approved medications of preventive migraine).

ID = identification

Appendix G: Data Extraction Tables

Note: New data added to tables from updated search have been highlighted in purple.

Monthly migraine days (MMDs)

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Change from baseline	Difference between treatments						
Episodic miç	graine											
ARISE ¹⁵ L	Low	Low 3 months	ERU 70 mg	282	-2.9 (SE 0.2)	MD -1.0 (95% CI: -1.6, -0.5),						
ANGL	LOW	5 1101(115	Placebo	288	-1.8 (SE 0.2)	p<0.001						
			ERU 70 mg	325	-2.66 (SE 0.23)	MD -0.97 (95% CI: -1.59, -0.35), p=0.002						
		1 month	ERU 140 mg	214	-3.12 (SE 0.28)	MD -1.44 (95% CI: -2.13, -0.74), p<0.001						
			Placebo	324	-1.69 (SE 0.23)	NA						
			ERU 70 mg	316	-3.68 (SE 0.24)	MD -1.20 (95% CI: -1.85, -0.55), p<0.001						
EMPOwER ¹	High	2 months	ERU 140 mg	205	-3.88 (SE 0.29)	MD -1.40 (95% CI: -2.13, -0.67), p<0.001						
			Placebo	318	-2.48 (SE 0.24)	NA						
		3 months	ERU 70 mg	306	-4.2 (SE 0.25)	MD -1.09 (95% CI: -1.77, -0.42), p=0.002						
			ERU 140 mg	199	-4.79 (SE 0.30)	MD -1.69 (95% CI: -2.45, -0.93), p<0.001						
			Placebo	310	-3.1 (SE 0.25)	NA						
		1–4 weeks	ERU 140 mg	119	-1.8 (SE 0.4)	MD -1.8 (95% CI: -2.7, -0.9),						
		1–4 weeks	Placebo	124	0.1 (SE 0.3)	p<0.001						
		5–8 weeks	ERU 140 mg	119	-2.3 (SE 0.4)	MD -2.4 (95% CI: -3.4, -1.4),						
LIBERTY ¹⁸	Low	J-0 WEEKS	Placebo	124	0.1 (SE 0.4)	p<0.001						
	LOW	LOW	LOW	LOW	LOW	LUW	LOW	9–12 weeks	ERU 140 mg	118	-1.8 (SE 0.4)	MD -1.6 (95% CI: -2.7, -0.5),
			Placebo	120	-0.2 (SE 0.4)	p=0.004						
		3 months	ERU 140 mg	76	-1.8 (SE 0.6)	MD -1.3 (95% CI: -2.7, 0.1),						
		omontaio	Placebo	69	-0.5 (SE 0.5)	p=0.07						
			ERU 70 mg	135	-2.25 (95% CI: -2.78, -1.73)	MD -2.31 (95% CI: -3.00, -1.62), p<0.001						
Sakai et al 2019 ²³	Low	Low 4–6 months	ERU 140 mg	136	-1.83 (95% CI: -2.35, -1.31)	MD -1.89 (95% CI: -2.58, -1.20), p<0.001						
			Placebo	136	0.06 (95% CI: -0.46, 0.58)	NA						
STRIVE ²⁶	Low	1 month	ERU 70 mg	312	-2.32 (95% CI: -2.73, -1.92)	MD -1.42 (95% CI: -1.99, -0.85), p<0.00001						

Table A22 MMDs in patients receiving erenumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Change from baseline	Difference between treatments
			ERU 140 mg	318	-2.72 (95% CI: -3.12, -2.32)	MD -1.89 (95% CI: -2.62, -1.16), p<0.00001
			Placebo	316	-0.90 (95% CI: -1.30, -0.50)	NA
			ERU 70 mg	312	-2.93 (95% CI: -3.34, -2.52)	MD -1.54 (95% CI: -2.12, -0.96), p<0.00001
		2 months	ERU 140 mg	318	-3.10 (95% CI: -3.50, -2.70)	MD -1.71 (95% CI: -2.28, -1.14), p<0.00001
			Placebo	316	-1.39 (95% CI: -1.80, -0.99)	NA
			ERU 70 mg	312	-2.97 (95% CI: -3.38, -2.56)	MD -1.26 (95% CI: -1.84, -0.68), p<0.0001
		3 months	ERU 140 mg	318	-3.50 (95% CI: -3.91, -3.10)	MD -1.79 (95% CI: -2.37, -1.21), p<0.00001
			Placebo	316	-1.71 (95% CI: -2.12, -1.30)	NA
			ERU 70 mg	312	-3.09 (95% CI: -3.50, -2.67)	MD -1.15 (95% CI: -1.73, -0.57), p<0.0001
		4 months	ERU 140 mg	318	-3.52 (95% CI: -3.93, -3.11)	MD 1.58 (95% CI: -2.16, -1.00), p<0.00001
			Placebo	316	-1.94 (95% CI: -2.35, -1.52)	NA
			ERU 70 mg	312	-3.34 (95% CI: -3.75, -2.93)	MD -1.46 (95% CI: -2.04, -0.88), p<0.00001
		5 months	ERU 140 mg	318	-3.74 95% CI: -4.15, -3.33)	MD -1.86 (95% CI: -2.44, -1.28), p<0.00001
			Placebo	316	-1.88 (95% CI: -2.29, -1.46)	NA
			ERU 70 mg	312	-3.26 (95% CI: -3.67, -2.84)	MD -1.59 (95% CI: -2.17, -1.01), p<0.00001
		6 months	ERU 140 mg	318	-3.76 (95% CI: -4.17, -3.35)	MD -2.09 (95% CI: -2.67, -1.51), p<0.00001
			Placebo	316	-1.67 (95% CI: -2.08, -1.25)	NA
			ERU 70 mg	312	-3.2 (SE 0.2)	MD -1.4 (95% CI: -1.9, -0.9), p<0.001
		4–6 months	ERU 140 mg	318	-3.7 (SE 0.2)	MD -1.9 (95% CI: -2.3, -1.4), p<0.001
			Placebo	316	-1.8 (SE 0.2)	NA
Sun et al	Low	12 weeks	ERU 70 mg	104	-3.4 (SE 0.4)	-1.1 (95% CI: -2.1, -0.2), p=0.021
201635			Placebo	153	-2.3 (SE 0.3)	
Chronic mig	raine			1	I	
Toppor at al			ERU 70 mg	188	-6.6 (SE 0.4)	MD -2.5 (95% CI: -3.5, -1.4), p<0.0001
Tepper et al 2017 ⁴⁰	Low	Low 3 months	ERU 140 mg	187	-6.6 (SE 0.4)	MD -2.5 (95% CI: -3.5, -1.4), p<0.0001
			Placebo	281	-4.2 (SE 0.4)	NA

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Change from baseline	Difference between treatments
		Week 4	ERU 70 mg	277	-6 (SE 0.4)	MD -2.53 (95% CI: -3.54, -1.52), p<0.001
			Placebo	277	-3.4 (SE 0.4)	NA
DRAGON 2022 ¹⁰⁹	Some conce	Week 8	ERU 70 mg	274	-7.4 (SE 0.4)	MD -1.96 (95% CI: -3.10, -0.82), p=0.001
2022103	rns		Placebo	274	-5.4 (SE 0.4)	NA
		Week 12	ERU 70 mg	270	-8.2 (SE 0.5)	MD -1.57 (95% CI: -2.83, -0.30), p=0.015
			Placebo	274	-6.6 (SE 0.5)	NA
Episodic an	d chronic	migraine				
HER-	Low	4–6 months	ERU 70 or 140 mg	383	-5.86 (SE 0.24)	MD -1.84 (95% CI: -2.43, -1.25),
MES ^{49*}	LOW	4-0 11011(15	Topiramate 25–100 mg	385	-4.02 (SE 0.24)	p<0.001
Takeshima et al	Low	4–6 months	ERU 70 mg	129	-3.60 (SE 0.38)	MD -1.62 (95% CI: -2.52, -0.73), p<0.001
202151,53**			Placebo	128	-1.98 (SE 0.38)	p<0.001
Subgroups	of patients	s with >2 prior tr	eatment failures	- Episo	dic migraine	
LIBERTY ¹⁸	Low	Low 3 months	ERU 140 mg	76	-1.8 (SE 0.6)	MD -1.3 (95% CI: -2.7, 0.1),
	LOW		Placebo	69	-0.5 (SE 0.5)	p=0.07
		1 month	ERU 70 mg	49	-1.6 (SD NR)	NR†
			ERU 140 mg	58	-2.5 (SD NR)	NR
			Placebo	54	-0.3 (SD NR)	NR
			ERU 70 mg	49	-1.8 (SD NR)	NR
		2 months	ERU 140 mg	58	-3 (SD NR)	NR
			Placebo	54	-0.4 (SD NR)	NR
			ERU 70 mg	49	-1.8 (SD NR)	NR
		3 months	ERU 140 mg	58	-3.5 (SD NR)	NR
			Placebo	54	-0.9 (SD NR)	NR
			ERU 70 mg	49	-2 (SD NR)	NR
STRIVE ³⁰	Low	4 months	ERU 140 mg	58	-2.7 (SD NR)	NR
			Placebo	54	0 (SD NR)	NR
			ERU 70 mg	49	-1.4 (SD NR)	NR
		5 months	ERU 140 mg	58	-3 (SD NR)	NR
			Placebo	54	-0.7 (SD NR)	NR
			ERU 70 mg	49	-1.2 (SD NR)	NR
		6 months	ERU 140 mg	58	-3.1 (SD NR)	NR
			Placebo	54	-0.1 (SD NR)	NR
		4–6 months	ERU 70 mg	49	Range from 4–6 mo	MD -1.3 (95% CI: -2.6, 0.0), p<0.05
			ERU 140 mg	58	Range from 4–6 mo	MD -2.7 (95% CI: -4.0, -1.4), p<0.001

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Change from baseline	Difference between treatments
			Placebo	54	Range from 4–6 mo	NA
Takeshima et al	Low	4–6 months	ERU 70 mg	78	-2.92 (SE NR)	MD -1.67 (95% CI: -2.56, -0.78),
202151**	LOW		Placebo	81	-1.25 (SE NR)	p<0.001
Subgroups of	of patients	s with >2 prior tre	eatment failures	- Chron	ic migraine	
Takeshima et al	Low	4–6 months	ERU 70 mg	50	-5.11 (SE NR)	MD -1.57 (95% CI: -3.39, 0.24),
202151**	LOW	+ 0 11011013	Placebo	52	-3.54 (SE NR)	p=0.089
			ERU 70 mg	93	-5.4 (SE NR)	MD -2.7 (95% CI: -4.2, -1.2), p<0.001
Tepper et al 2017 ⁴¹	· · I I OW	v 3 months	ERU 140 mg	92	-7.0 (SE NR)	MD -4.3 (95% CI: -5.8, -2.8), p<0.001
			Placebo	142	-2.7 (SE NR)	NA

CI = confidence interval, ERU = erenumab, MD = mean difference, mo = months, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SD = standard deviation, SE = standard error.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In HER-MES, the following number of patients were included: For erenumab, 4–7 MMDs = 94 (24.2%), Episodic = 248 (63.9%), Chronic = 43 (11.1%). For topiramate, 4–7 MMDs = 92 (23.7%). Episodic (8–14 MMDs) = 254 (65.5%). Chronic (≥15 MMDs) = 42 (10.8%).

** Takeshima et al 2021 did not report the number of patients who had chronic or episodic migraine.

† Mean differences were unable to be calculated by RACS because there was no measure of variance (SD or SE) reported.

Trial name	ROB	Timepoint of assessment	Interventio n and dose	n	Change from baseline	Difference between treatments
Episodic mig	graine					
		1–12 weeks	-12 weeks EPT 100 g221 -3.9 (95% CI: -4.28, -3.47)		MD -0.69 (95% CI: -1.25, -0.12), p=0.0182	
		1–12 weeks	EPT 300 mg	222	-4.3 (95% CI: -4.70, -3.90)	MD -1.11 (95% CI: -1.68, -0.54), p=0.0001
PROMISE-	High	1–12 weeks	Placebo	222	-3.2 (95% CI: -3.60, -2.79)	NA
1 34,35	154,55	13–24 weeks	EPT 100 mg	221	-4.5 (NR)	MD -0.76 (95% CI: -1.40, -0.11), p=NR
		13–24 weeks	EPT 300 mg	222	-4.8 (NR)	MD -1.02 (95% CI: -1.66, -0.37), p=NR
		13–24 weeks	Placebo	222 -3.8 (NR)		NA
Chronic mig	raine					
	Some	3 months	EPT 100 mg	118	-7.7 (SD 6.9)	MD -2.1 95% CI: -3.8, -0.4), p=0.0178
Dodick et al 2019 ⁵⁷	conce rns	3 months	EPT 300 mg	114	-8.2 (SD 7.0)	MD -2.7 (95% CI: -4.4, -0.9), p=0.0034
		3 months	Placebo	116	-5.6 (SD 6.6)	NA
PROMISE-	L ou r	1–12 weeks	EPT 100 mg	356	-7.7 (Range -22, 10), p<0.0001	MD -2.0 (95% CI: -2.9, -1.2), p<0.0001
2 ^{58,63,64}	Low	1–12 weeks	EPT 300 mg	350	-8.2 (Range -23, 11), p<0.0001	MD -2.6 (95% CI: -3.4, -1.7), p<0.0001

Table A23 MMDs in patients receiving eptinezumab

Trial name	ROB	Timepoint of assessment	Interventio n and dose	n	Change from baseline	Difference between treatments
			Placebo	366	-5.6 (Range -25, 9)	NA
		13–24 weeks	EPT 100 mg	356	-8.3 (SD 7.03)	MD - 1.98 (95% CI: - 2.94, -1.01), p=0.0003
		13–24 weeks	EPT 300 mg	350	-9.0 (SD 6.72)	MD -2.65 (95% CI: - 3.62, -1.68), p<0.00001
	13–24 weeks Placebo 366 -6.4 (SD 7.16)		-6.4 (SD 7.16)	NA		
Subgroups of	of patients	s with >2 prior tro	eatment failure	s - epis	odic and chronic migr	aine
		1–12 weeks	EPT 100 mg	299	-4.8 (SE 0.4)	MD -2.7 (95% CI: -3.4, -2.0), p<0.0001
			EPT 300 mg	293	-5.3 (SE 0.4)	MD -3.2 (95% CI: -3.9, -2.5), p<0.0001
DELIVER	Law		Placebo	298	-2.1 (SE 0.4)	NA
2022110) Low	Low	EPT 100 mg	287	-5.4 (SE 0.4)	MD -3.0 (95% CI: -3.8, -2.2), p<0.0001
		13–24 weeks	EPT 300 mg	286	-6.1 (SE 0.4)	MD -3.7 (95% CI: -4.5, -3.0), p<0.0001
			Placebo	295	-2.4 (SE 0.4)	NA

CI = confidence interval, **EPT** = eptinezumab, **MD** = mean difference, **n** = number of patients, **NA** = not applicable, **NR** = not reported, **ROB** = risk of bias, **SD** = standard deviation.

Notes

Blue text indicates RACS calculated comparisons.

Table A24	MMDs in patients receiving fremanezumab
-----------	---

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Change from baseline	Difference between treatments
Episodic mi	graine					
			FRE 225 mg	96	NR	MD 2.13 (95% CI: -3.36, - 0.90), p=0.0007
		1–4 weeks	FRE 675 mg	97	NR	MD -2.42 (95% CI: -3.65, - 1.19), p=0.0001
			Placebo	104	NR	NA
		v 5–8 weeks	FRE 225 mg	96	NR	MD -2.49 (95% CI: -3.78, - 1.20), p=0.0002
Bigal et al 2015b ⁶⁵	Low		FRE 675 mg	97	NR	MD -2.66 (95% CI: -3.95, - 1.36), p<0.0001
			Placebo	104	NR	NA
			FRE 225 mg 9		NR	MD -2.81 (95% CI: -4.07, - 1.55), p<0.0001
		9–12 weeks	FRE 675 mg	97	NR	MD -2.64 (95% CI: -3.90, - 1.38), p<0.0001
			Placebo	104	NR	NA
HALO EM ⁶⁸	High	4 weeks	FRE 225 mg	287	-3.5 (95% Cl: -4.05, - 2.93)	MD -1.8 (95% CI: -2.43, - 1.18), p<0.001
		-	FRE 675 mg	288	-3.3 (95% Cl: -3.85, -	MD -1.6 (95% CI: -2.22, -

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Change from baseline	Difference between treatments		
					2.71)	0.97), p<0.001		
			Placebo	290	-1.7 (95% CI: -2.24, - 1.13)	NA		
			FRE 225 mg	287	-3.7 (95% CI: -4.15, - 3.18)	MD -1.5 (95% CI: -2.01, - 0.93), p<0.001		
		12 weeks	FRE 675 mg	288	-3.4 (95% CI: -3.94, - 2.96)	MD -1.3 (95% CI: -1.79, - 0.72), p<0.001		
			Placebo	290	-2.2 (95% CI: -2.68, - 1.71)	NA		
			FRE 225 mg	121	-4.0 (SE 0.4)	MD -3.0 (95% Cl: -3.74, - 2.23), p<0.0001		
Sakai et al 2021b ⁷¹	Low	1–12 weeks	FRE 675 mg	117	-4.0 (SE 0.4)	MD -3.0 (95% CI: -3.76, - 2.24), p<0.0001		
			Placebo	116	-1.0 (SE 0.4)	NA		
Chronic mig	graine	1	I	I	•			
		1–4 weeks	FRE 675/225 mg*	88	NR	MD -2.07 (95% CI: -3.7, -0.5),		
			Placebo	89	NR	p=0.012		
Bigal et al	Low	5–8 weeks	FRE 675/225 mg	88	NR	MD -1.64 (95% CI: -3.4,		
2015a ⁷³			Placebo	89	NR	– 0.13), p=0.069		
		9–12 weeks	FRE 675/225 mg	88	NR	MD -1.72 (95% CI: -3.7, 0.2),		
			Placebo	89	NR	– p=0.08		
		ow 3 months	FRE 225 mg	375	-5.0 (SE 0.4)	MD -1.8 (SE 0.4), p<0.001		
HALO CM ⁷⁶	Low		FRE 675 mg	375	-4.9 (SE 0.4)	MD -1.7 (SE 0.4), p<0.001		
			Placebo	371	-3.2 (SE 0.4)	NA		
Calvai at al			FRE 225 mg	187	-4.9 (SE 0.5)	MD -2.1 (95% CI: -3.10, - 1.12), p<0.001		
Sakai et al 2021a ⁸³	Low	1–12 weeks	FRE 675 mg	189	-4.1 (SE 0.5)	MD -1.3 (95% CI: -2.27, - 0.29), p=0.011		
			Placebo	190	-2.8 (SE 0.5)	NA		
Episodic an	d chron	ic migraine		1	1	-		
			FRE quarterly	276	-4.1 (SE 0.4)	MD -3.6 (95% CI: -4.3, -2.8), p<0.0001		
		1 month	FRE monthly	283	-4.1 (SE 0.4)	MD -3.5 (95% CI: -4.2, -2.8), p<0.0001		
FOCUS ^{85**}	1.000		Placebo	278	-0.6 (SE 0.4)	NA		
	Low		FRE quarterly	276	-3.7 (SE 0.3)	MD -3.1 (95% CI: -3.8, -2.4), p<0.0001		
		3 months	FRE monthly	283	-4.1 (SE 0.3)	MD -3.5 (95% CI: -4.2, -2.8), p<0.0001		
			Placebo	278	-0.6 (SE 0.3)	NA		
Subgroups	of patie	nts with >2 pric	or treatment fail	lures - e	episodic and chronic migra	aine		
FOCUS ^{85**}	Low	3 months	FRE	50	-3.6 (SE 0.7)	MD -3.4 (95% CI: -5.0, -1.8),		

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Change from baseline	Difference between treatments
			quarterly			p<0.0001
			FRE monthly	60	-4.6 (SE 0.7)	MD -4.4 (95% CI: -6.0, -2.8), p<0.0001
			Placebo	54	-0.2 (SE 0.7)	NA

CI = confidence interval, FRE = fremanezumab, MD = mean difference, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SE = standard error.

Notes

* In Bigal et al 2015a patients received 675 mg in the first treatment cycle and 225 mg in the second and third treatment cycles.

** In the FOCUS trial, there were three treatment groups; FRE quarterly, monthly and placebo. In the FRE quarterly group, patients received 675 mg FRE and 107 (39%) had episodic migraine, while 169 (61%) had chronic migraine. In the FRE monthly group 110 (39%) patients had episodic migraine and received 225 mg FRE monthly while 173 (61%) of patients had chronic migraine and received 675 mg FRE as a loading dose then 225 mg monthly. In the placebo group, 112 (40%) of patients had episodic migraine while 167 (60%) had chronic migraine.

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Change from baseline	Difference between treatments
Episodic mig	raine					
CONQUER			GAL120 mg	137	-2.9 (SE 0.3)	MD -2.6 (95% CI: -
106	Low 3 months		Placebo	132	-0.3 (SE 0.3)	3.4, -1.7), p<0.001
EVOLVE-			GAL120 mg	210	-4.7 (SE 0.29)	MD -1.9 (95% CI: - 2.5, -1.4), p<0.001
189	Low	1–6 months	GAL 240 mg	208	-4.6 (SE 0.29)	MD -1.8 (95% Cl: - 2.3, -1.2), p<0.001
			Placebo	425	-2.8 (SE 0.24)	NA
EVOLVE-	_		GAL 120 mg	226	-4.3 (SE 0.3)	MD -2.02 (SE 0.27), p<0.001
2 ⁹¹	Low	1–6 months	GAL 240 mg	220	-4.2 (SE 0.3)	MD -1.90 (SE 0.27), p<0.001
			Placebo	450	-2.3 (SE 0.2)	NA
		v 1–6 months	GAL 120 mg	115	-3.60 (95% Cl: -4.25, - 2.96)	MD -3.01 (95% CI: - 3.80, -2.22), p<0.001
Sakai et al 2020a ⁹³	Low		GAL 240 mg	114	-3.36 (95% Cl: -4.01, - 2.71)	MD -2.77 (95% CI: - 3.56, -1.98), p<0.001
			Placebo	230	-0.59 (95% Cl: -1.05, - 0.14)	NA
Skljarevski	Low	1–12 weeks	GAL 120 mg	69	-4.80 (SE 0.37)	MD -1.14 (95% CI: -
et al 201898	Low	I-IZ weeks	Placebo	134	-3.66 (SE 0.28)	2.02, -0.29), p=0.01
		Month 1	GAL 120 mg	260	-3.6 (SE NR)	NR
			Placebo	258	-1.6 (SE NR)	NA
PERSIST	Low	Month 2 Month 3	GAL 120 mg	260	-3.8 (SE NR)	NR
2022 ¹¹²	LOW		Placebo	258	-2.02 (SE NR)	NA
			GAL 120 mg	260	-4.04 (SE NR)	NR
			Placebo	258	-2.35 (SE NR)	NA

Table A25 MMDs in patients receiving galcanezumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Change from baseline	Difference between treatments
		Months 1–3	GAL 120 mg	260	-3.81 (SE 0.23)	MD -1.82 (95% CI: - 2.32, -1.32), p<0.0001
			Placebo	258	-1.99 (SE 0.23)	NA
Chronic mig	raine					
	NQUER Low 3 months		GAL 120 mg	95	-6.0 (SE 0.7)	MD -3.7 (95% CI: - 5.2, -2.2), p<0.001
100			Placebo	98	-2.2 (SE 0.6)	NA
		w 1–3 months	GAL 120 mg	273	-4.8 (SE 0.4)	MD -2.1 (95% CI: - 2.9, -1.3), p<0.001
REGAIN ¹⁰²	Low		GAL 240 mg	274	-4.6 (SE 0.4)	MD -1.9 (95% CI: - 2.7, -1.1), p<0.001
			Placebo	538	-2.7 (SE 0.4)	NA
Episodic and	d chronic	migraine				
	Lline	10 months	GAL 120 mg	135	-5.6 (SE 0.34)	MD 0.90 (95% CI: -
CGAJ ^{105*}	High	12 months	GAL 240 mg	135	-6.5 (SE 0.33)	0.03, 1.83), p=0.06
Subgroups of	of patients	s with >2 prior tre	eatment failures - c	hronic n	nigraine	
		1–3 months	GAL 120 mg	72	-5.35 (SE 0.71)	MD -4.35 (SE 0.07), p<0.001
REGAIN ¹⁰³	Low		GAL 240 mg	104	-2.77 (SE 0.66)	MD 1.77 (SE 0.63), p<0.01
			Placebo	174	-1.01 (SE 0.54)	NA

CI = confidence interval, GAL = galcanezumab, MD = mean difference, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SD = standard deviation, SE = standard error.

Notes

Blue text indicates RACS calculated comparisons.

* In the CGAJ trial there were two treatment groups; GAL 120 mg and GAL 240 mg. In the GAL 120 mg group 80.7% of patients had episodic migraine and 19.3% of patients had chronic migraine. In the 240 mg group, 77.0% of patients had episodic migraine and 23.0% of patients had chronic migraine.

Monthly headache days (MHDs)

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Change from baseline	Difference between treatments
Episodic migraine	e					
Sun et al 2016 ³⁵	Low	12 weeks	ERU 70 mg	104	-3.5 (SE 0.4)	MD -1.2 (95% CI: -2.1, -
Sull et al 2010		12 weeks	Placebo	153	-2.4 (SE 0.3)	0.2), p=0.022
Episodic and chro	onic mig	Iraine				
		4–6 months	ERU 70 mg	130	-3.85 (SE 0.41)	
Takeshima et al 2021⁵¹⁺	Low	4–6 months	Placebo	131	-2.57 (SE 0.41)	MD -1.28 (95% CI: -2.22, -0.33), p=0.008

Table A26 MHDs in patients receiving erenumab

Abbreviations

CI = confidence interval, ERU = erenumab, n = number of patients, MD = mean difference, ROB = risk of bias, SE = standard error.

Notes

* Takeshima et al 2021 did not report the number of patients who had chronic or episodic migraine.

Table A27 MHDs in patients receiving eptinezumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs	Difference between treatments
Episodic migrain	e					
			EPT 100 mg	221	-4.0 (SD 3.30)	MD -0.70 (95% CI: -1.33, - 0.07), p=0.03
PROMISE-154	High	1–12 weeks	EPT 300 mg	222	-4.5 (SD 3.96)	MD -1.20 (95% CI: -1.90, - 0.50), p=0.0007
			Placebo	222	-3.3 (SD 3.51)	NA
Chronic migraine	9					
			EPT 300 mg	114	-9.6 (6.9)	MD -2.8 (95% CI: -4.5, -1.0), p=0.0022
Dodick et al 2019 ⁵⁷	Some concerns	3 months	EPT 100 mg	118	-8.9 (6.8)	MD -2.0 (95% CI: -3.7, -0.3), p= 0.0224
			Placebo	116	-6.9 (6.4)	NA
			EPT 100 mg	356	-8.2 (SD 5.78)	MD -1.7 (95% CI: -2.6, -0.9), p<0.0001
		1–12 weeks	EPT 300 mg	350	-8.8 (SD 6.1)	MD -2.3 (95% CI: -3.2, -1.4), p<0.00001
			Placebo	366	-6.4 (SD 5.99)	NA
PROMISE-258,63	Low		EPT 100 mg	356	-9.6 (SD 6.62)	-1.5 (95% CI: -2.44, -0.47), p=0.003
		13–24 weeks	EPT 300 mg	350	-10.6 (SD 6.83)	-2.4 (95% CI: -3.43, -1.42), p<0.00001
			Placebo	366	-8.1 (SD 6.90)	NA
Subgroups of pa	tients with >	>2 prior treatmen	t failures - episod	dic and	chronic migraine	

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs	Difference between treatments
		1–12 weeks	EPT 100 mg	299	-4.6 (SE 0·37)	MD -2.6 (95% CI: -3.3, -1.9), p<0.0001
			EPT 300 mg	293	-5.1 (SE 0.37)	MD -3.0 (95% CI: -3.7, -1.9), p<0.0001
DELIVER			Placebo	298	-2.1 (SE 0.38)	NA
2022110	Low	13–24 weeks	EPT 100 mg	287	-5.6 (SE 0.39)	-3.0 (95% CI: -3.8, -2.3), p<0.0001
			EPT 300 mg	286	-6.2 (SE 0.39)	-3.6 (95% CI: -4.4, -2.9), p<0.0001
			Placebo	295	-2.6 (SE 0.39)	NA

CI = confidence interval, **EPT** = eptinezumab, **MD** = mean difference, **MHDs** = monthly headache days, **n** = number of patients, **NA** = not applicable, **NR** = not reported, **ROB** = risk of bias, **SD** = standard deviation.

Notes

Blue text indicates RACS calculated comparisons.

Table A28 MHDs in patients receiving fremanezumab

	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs	Difference between treatments
Episodic migra	ine					
			FRE 225 mg	96	NR	-2.14 (95% CI: -3.33, -0.95), p=0.0005
		Weeks 1–4	FRE 675 mg	97	NR	-2.05 (95% CI: -3.23, -0.86), p=0.0008
			Placebo	104	NR	NA
		Weeks 5–8	FRE 225 mg	96	NR	-2.62 (95% CI: -3.88, -1.36), p<0.0001
Bigal et al 2015b ⁶⁵	Low		FRE 675 mg	97	NR	-2.39 (95% CI: -3.65, -1.13), p=0.0002
			Placebo	104	NR	NA
		Weeks 9–12	FRE 225 mg	96	NR	-2.63 (95% CI: -3.91, -1.34), p<0.0001
			FRE 675 mg	97	NR	-2.58 (95% CI: -3.87, -1.30), p<0.0001
			Placebo	104	NR	NA
Chronic migrai	ne					
		Weeks 1–4	FRE 675/225 mg*	88	NR	-2.13 (95% CI: -3.8, -0.5), p=0.012
			Placebo	89	NR	
Bigal et al 2015a ⁷³	Low	Weeks 5–8	FRE 675/225 mg	88	NR	-1.31 (95% CI: -3.1, 0.5), p=0.151
			Placebo	89	NR	
		Weeks 9–12	FRE 675/225 mg	88	NR	-1.74 (95% Cl: -3.6, 0.1), p=0.069

	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs	Difference between treatments
			Placebo	89	NR	
			FRE 225 mg	375	-4.5 (SE 0.3)	-2.4 (95% CI: -3.23, -1.57), p<0.00001
		4 weeks	FRE 675 mg	375	-4.4 (SE 0.3)	-2.3 (95% CI: -3.13, -1.47), p<0.00001
	Low		Placebo	371	-2.1 (SE 0.3)	NA
HALO CM ⁷⁶	Low		FRE 225 mg	375	-4.6 (SE 0.3)	-2.1 (95% CI: -2.93, -1.27), p<0.00001
		12 weeks	FRE 675 mg	375	-4.3 (SE 0.3)	-1.8 (95% CI: -2.63, -0.97), p<0.0001
			Placebo	371	-2.5 (SE 0.3)	NA
			FRE 225 mg	187	-4.1 (SE 0.4)	-1.7 (95% CI: -2.54, -0.80), p<0.001
Sakai et al 2021a ⁸³	Low	weeks 1–12	FRE 675 mg	189	-4.1 (SE 0.4)	-1.7 (95% CI: -2.55, -0.82), p<0.001
			Placebo	190	-2.4 (SE 0.4)	NA
Episodic and c	hronic mi	igraine	1		1	
		1 month	FRE quarterly	276	-4.2 (SE 0.4)	-3.7 (95% CI: -4.4, -3.0), p<0.0001
			FRE monthly	283	-4.5 (SE 0.3)	-3.9 (95% CI: -4.6, -3.2), p<0.0001
FOCUS ^{85**}	Low		Placebo	278	-0.5 (SE 0.3)	NA
	2011	3 months	FRE quarterly	276	-3.9 (SE 0.3)	-3.2 (95% CI: -3.9, -2.5), p<0.0001
			FRE monthly	283	-4.2 (SE 0.3)	-3.6 (95% CI: -4.3, -2.9), p<0.0001
			Placebo	278	-0.6 (SE 0.3)	NA
Subgroup in ep	oisodic an	nd chronic migra	aine patients			
		1 month	FRE quarterly	140	-4.1 (0.43)	-3.2 (95% CI: -4.09, -2.21), p<0.0001
		2 Tx failures	FRE monthly	133	-4.7 (0.43)	-3.8 (95% CI: -4.71, -2.80), p<0.0001
			Placebo	141	-1.0 (0.43)	NA
FOCUS ⁸⁶	Low	1 marth	FRE quarterly	85	-4.1 (0.58)	-4.0 (95% CI: -5.34, -2.60), p<0.0001
	LOW	1 month 3 Tx failures	FRE monthly	98	-4.0 (0.58)	-3.8 (95% CI: -5.11, -2.49), p<0.0001
			Placebo	82	-0.2 (0.56)	NA
		1 month	FRE quarterly	49	-5.3 (1.03)	-6.0 (95% CI: -8.30, -3.78), p<0.0001
		4 Tx failures	FRE monthly	50	-5.2 (0.90)	-5.9 (95% CI: -8.02, -3.81), p<0.0001

	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs	Difference between treatments
			Placebo	54	0.7 (1.03)	NA
		0	FRE quarterly	140	-3.9 (0.42)	-2.7 (95% CI: -3.64, -1.86), p<0.0001
		3 months 2 Tx failures	FRE monthly	133	-4.8 (0.42)	-3.6 (95% CI: -4.47, -2.65), p<0.0001
			Placebo	141	-1.2 (0.42)	NA
		3 months 3 Tx failures	FRE quarterly	85	-3.9 (0.59)	-3.6 (95% CI: -4.96, -2.21), p<0.0001
			FRE monthly	98	-3.5 (0.59)	-3.2 (95% CI: -4.56, -1.93), p<0.0001
			Placebo	82	-0.3 (0.57)	NA
		3 months 4 Tx failures	FRE quarterly	49	-4.7 (1.01)	-5.2 (95% CI: -7.42, -3.07), p<0.0001
			FRE monthly	50	-4.9 (0.88)	-5.4 (95% CI: -7.47, -3.42), p<0.0001
			Placebo	54	0.6 (1.02)	NA

CI = confidence interval, FRE = fremanezumab, MD = mean difference, MHDs = monthly headache days, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SE = standard error, Tx = treatment.

Notes

Blue text indicates RACS calculated comparisons.

* In Bigal et al 2015a patients received 675 mg in the first treatment cycle and 225 mg in the second and third treatment cycles.

** In the FOCUS trial, there were three treatment groups; FRE quarterly, monthly and placebo. In the FRE quarterly group, patients received 675 mg FRE and 107 (39%) had episodic migraine, while 169 (61%) had chronic migraine. In the FRE monthly group 110 (39%) patients had episodic migraine and received 225 mg FRE monthly while 173 (61%) of patients had chronic migraine and received 675 mg FRE as a loading dose then 225 mg monthly. In the placebo group, 112 (40%) of patients had episodic migraine while 167 (60%) had chronic migraine.

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs	Difference between treatments				
Episodic migraine										
Dodick et al	Low	3 months	GAL 150 mg	107	-4.9 (4.1)	MD -1.3 (90%CI: -2.1, -				
2014a ⁸⁸	LOW	5 11011115	Placebo	110	-3.7 (4.2)	0.5), p=0.012				
Sklierovski ot ol			GAL 120 mg	69	-3.11 (SE 0.31)	MD -0.64 (95% CI: -1.39,				
Skljarevski et al 2018 ⁹⁹	Low	3 months	Placebo	134	-2.47 (SE 0.22)	0.11), p=0.09				
Chronic migraine	e									
		Average	GAL 120 mg	273	-4.8 (SE 0.4)	MD -1.8 (95% CI: -2.7, - 1.0), p<0.001				
REGAIN ¹⁰²	Low	across months 1–9	GAL 240 mg	274	-4.6 (SE 0.4)	MD -1.6 (95% CI: -2.4, - 0.8), p<0.001				
			Placebo	538	-3.0 (SE 0.4)	NA				
Episodic and chi	ronic mig	Iraine								
	1.1.1	12 months	GAL 120 mg	135	-2.2 (0.3)	MD -0.10 (95% CI: -0.93,				
CGAJ ^{105*}	High		GAL 240 mg	135	-2.1 (0.3)	0.73), p=0.81				

Table A29 MHDs in patients receiving galcanezumab

Abbreviations

CI = confidence interval, **GAL** = galcanezumab, **MD** = mean difference, **MHDs** = monthly headache days, **n** = number of patients, **NA** = not applicable, **NR** = not reported, **ROB** = risk of bias, **SE** = standard error.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In the CGAJ trial there were two treatment groups; GAL 120 mg and GAL 240 mg. In the GAL 120 mg group 80.7% of patients had episodic migraine and 19.3% of patients had chronic migraine. In the 240 mg group, 77.0% of patients had episodic migraine and 23.0% of patients had chronic migraine.

Migraine Headache days (MHDs) with acute medication usage

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs with acute medication	Difference between treatments	
Episodic migr	aine			1			
ARISE ¹⁵	Low	3 months	ERU 70 mg	282	-1.2 (SE 0.1)	MD -0.6 (95% CI: -1.0, -	
ANOL	LOW	0 11011110	Placebo	288	-0.6 (SE 0.1)	0.2), p=NR	
			ERU 70 mg	123	-1.63 (SE 0.22)	MD -1.33 (95% CI: -1.93, -0.73), p<0.001	
		1 month	ERU 140 mg	80	-1.90 (SE 0.28)	MD -1.60 (95% CI: -2.28, -0.92), p<0.001	
			Placebo	127	-0.30 (SE 0.22)	NA	
			ERU 70 mg	123	-2.03 (SE 0.24)	MD -1.50 (95% CI: -2.14, -0.86), p<0.001	
EMPOwER ¹⁷	High	2 months	ERU 140 mg	80	-2.28 (SE 0.29)	MD -1.75 (95% CI: -2.47, -1.02), p<0.001	
			Placebo	127	-0.53 (SE 0.23)	NA	
			ERU 70 mg	123	-1.84 (SE 0.26)	MD -1.36 (95% CI: -2.07, -0.64), p<0.001	
		3 months	ERU 140 mg	80	-2.39 (SE 0.33)	MD -1.90 (95% CI: -2.71, -1.09), p<0.001	
			Placebo	127	-0.49 (SE 0.26)	NA	
		weeks 1_4	ERU 140 mg	119	-1.1 (SE 0.2)	MD -1.4 (95% CI: -2.0, -	
		weeks 1–4	Placebo	124	0.3 (SE 0.2)	0.8), p<0.001	
LIBERTY ¹⁸	Low	weeks 5–8	ERU 140 mg	119	-1.3 (SE 0.2)	MD -1.9 (95% CI: -2.6, -	
	LOW		Placebo	124	0.6 (SE 0.3)	1.2), p<0.001	
		weeks 9–12	ERU 140 mg	118	-1.3 (SE 0.2)	MD -1.7 (95% CI: -2.4, -	
		WCCING O TZ	Placebo	120	0.5 (SE 0.3)	1.0), p<0.001	
			ERU 70 mg	135	-1.19 (95% Cl: -1.64, - 0.74)	MD -2.07 (95% CI: -2.66, -1.49), p<0.001	
Sakai et al 2019 ²³	Low	months 4–6	ERU 140 mg	136	-1.16 (95% Cl: -1.60, - 0.71)	MD -2.04 (95% CI: -2.63, -1.45), p<0.001	
			Placebo	136	0.88 (95% CI: 0.44, 1.33)	NA	
			ERU 70 mg	312	-0.78 (95% CI: -1.03, - 0.53)	MD -0.75 (95% CI: -1.10, -0.40), p<0.0001	
		1 month	ERU 140 mg	318	-1.40 (95% CI: -1.65, - 1.15)	MD -1.37 (95% CI: -1.72, -1.02), p<0.0001	
			Placebo	316	-0.03 (95% CI: -0.28, 0.22)	NA	
STRIVE ²⁶	Low		ERU 70 mg	312	-1.10 (95% CI: -1.35, - 0.85)	MD -0.76 (95% CI: -1.11, -0.41), p<0.0001	
		2 months	ERU 140 mg	318	-1.56 (95% CI: -1.81, - 1.31)	MD -1.22 (95% CI: -1.57, -0.87), p<0.0001	
			Placebo	316	-0.34 (95% CI: -0.59, - 0.09)	NR	
		3 months	ERU 70 mg	312	-1.12 (95% CI: -1.37, -	MD -0.79 (95% CI: -1.14,	

Table A30 MHDs with acute medication usage, erenumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs with acute medication	Difference between treatments	
					0.87)	-0.44), p<0.0001	
			ERU 140 mg	318	-1.56 (95% Cl: -1.81, - 1.31)	MD -1.23 (95% CI: -1.58, -0.88), p<0.0001	
			Placebo	316	-0.33 (95% CI: -0.58, - 0.08)	NA	
			ERU 70 mg	312	-1.08 (95% CI: -1.33, - 0.82)	MD -0.89 (95% CI: -1.25, -0.53), p<0.0001	
		4 months	ERU 140 mg	318	-1.56 (95% CI: -1.81, - 1.31)	MD -1.37 (95% CI: -1.73, -1.01), p<0.0001	
			Placebo	316	-0.19 (95% CI: -0.45, 0.06)	NA	
			ERU 70 mg	312	-1.17 (95% CI: -1.43, - 0.92)	MD -1.20 (95% CI: 0.84, 1.56), p<0.0001	
		5 months	ERU 140 mg	318	-1.61 (95% CI: -1.87, - 1.36)	MD 0.44 (95% CI: 0.07, 0.81), p=0.02	
			Placebo	316	-0.40 (95% CI: -0.66, - 0.14)	NA	
			ERU 70 mg	312	-1.14 (95% CI: -1.40, - 0.89)	MD -1.15 (95% CI: -1.52, -0.78), p<0.0001	
		6 months	ERU 140 mg	318	-1.67 (95% CI: -1.92, - 1.41)	MD -1.68 (95% CI: -2.04, -1.32), p<0.0001	
			Placebo	316	0.01 (95% CI: -0.25, 0.26)	NA	
			ERU 70 mg	312	-1.1 (SE 0.1)	MD -0.9 (95% CI: -1.2, - 0.6), p<0.001	
		4–6 months	ERU 140 mg	318	-1.6 (SE 0.1)	MD -1.4 (95% CI: -1.7, - 1.1), p<0.001	
			Placebo	316	-0.2 (SE 0.1)	NA	
Sun et al	Low	12 weeks	ERU 70 mg	104	-2.5 (SE 0.3)	MD -1.2 (95% CI: -2, -	
201635	LOW	12 WEEKS	Placebo	153	-1.4 (SE 0.3)	0.3), p=0.006	
Chronic migra	ine						
Tana an at al			ERU 70 mg	188	-3.5 (SE 0.3)	MD -1.9 (95% CI: -2.6, - 1.1), p<0.0001	
Tepper et al 2017 ⁴⁰	Low	3 months	ERU 140 mg	187	-4.1 (SE 0.3)	MD -2.6 (95% CI: -3.3, - 1.8), p<0.0001	
			Placebo	281	-1.6 (SE 0.2)	NA	
DRAGON 2022 ¹⁰⁹	Some concerns	Week 12	ERU 70 mg	270	-5.34 (SE 0.39)	-0.67 (95% CI: -1.76, 0.41), p=0.223	
	Concerna		Placebo	274	-4.66 (SE 0.39)	NA	
Episodic and o	chronic mig	raine					
Takeshima et al 2021 ⁵¹	Low	4–6 months	ERU 70 mg	130	-2.57 (SE 0.32)	MD -1.47 (95% CI: -2.24, -0.71), p<0.001	
53			Placebo	131	-1.10 (SE 0.32)	-u. <i>r</i> i), p <u.uu i<="" td=""></u.uu>	
Subgroups of	patients wit	h >2 prior treatr	nent failures - e	episodio	c migraine		
LIBERTY ¹⁸	Low	Week 12	ERU 140 mg	76	-1.3 (SE 0.3)	MD -1.7 (95% CI: -2.6, -	
	_~**	WOUR 12	Placebo	69	0.4 (SE 0.4)	0.7), p<0.001	
STRIVE ³⁰	Low	1 month	ERU 70 mg	49	-0.9 (SD NR)	NR	

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs with acute medication	Difference between treatments
			ERU 140 mg	58	-2.2 (SD NR)	NR
			Placebo	54	-0.2 (SD NR)	NR
			ERU 70 mg	49	-1.4 (SD NR)	NR
		2 months	ERU 140 mg	58	-2.5 (SD NR)	NR
			Placebo	54	0 (SD NR)	NR
			ERU 70 mg	49	-1.1 (SD NR)	NR
		3 months	ERU 140 mg	58	-2.4 (SD NR)	NR
			Placebo	54	-1 (SD NR)	NR
		4 months	ERU 70 mg	49	-1.5 (SD NR)	NR
			ERU 140 mg	58	-2.4 (SD NR)	NR
			Placebo	54	0.3 (SD NR)	NR
			ERU 70 mg	49	-1 (SD NR)	NR
		5 months	ERU 140 mg	58	-2.2 (SD NR)	NR
			Placebo	54	-0.4 (SD NR)	NR
			ERU 70 mg	49	-0.7 (SD NR)	NR
		6 months	ERU 140 mg	58	-2.3 (SD NR)	NR
			Placebo	54	0.5 (SD NR)	NR
			ERU 70 mg	49	NR	MD -1.2 (95% CI: -2.2, - 0.3), p=sig*
		4-6 months	ERU 140 mg	58	NR	MD -2.5 (95% CI: -3.4, - 1.5), p=sig*
			Placebo	54	NR	NA
Subgroups of	patients wit	h >2 prior treatr	ment failures - e	episodi	c migraine	
		3 months	ERU 70 mg	93	-4.1 (SE NR)	MD -2.8 (95% CI: -3.9, - 1.7), p<0.001
Tepper et al 2017 ⁴¹	Low		ERU 140 mg	92	-5.4 (SE NR)	MD -4.1 (95% CI: -5.3, - 3.0), p<0.001
			Placebo	142	-1.3 (SE NR)	NA

CI = confidence interval, ERU = erenumab, MD = mean difference, MHDs = monthly headache days, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SD = standard deviation, SE = standard error, sig = significant. Notes

Blue text indicates RACS calculated comparisons.

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs with acute medication	Difference between treatments
Episodic migraine						
			EPT 100 mg	221	-0.9 (SD 2.00)	MD -0.50 (95% CI: -0.81, - 0.19), p=0.002
PROMISE-154	High	1–12 weeks	EPT 300 mg	222	-0.8 (SD 1.77)	MD -0.40 (95% CI: -0.69, - 0.11), p=0.006
			Placebo	222	-0.4 (SD 1.27)	NA
Chronic migraine						
		1–12 weeks	EPT 100 mg	356	-3.3 (SD 4.89)	MD -1.2 (95% CI: -1.7, -0.6), p<0.0001
	Low		EPT 300 mg	350	-3.5 (SD 4.62)	MD -1.4 (95% CI: -1.9, -0.9), p<0.0001
			Placebo	366	-1.9 (SD 4.18)	NA
PROMISE-258,63		13–24 weeks	EPT 100 mg	356	-3.4 (SD 5.14)	MD -1.1 (95% CI: -1.86, - 0.42), p=NR
			EPT 300 mg	350	-3.9 (SD 4.96)	MD -1.7 (95% CI: -2.44, - 1.01), p=NR
			Placebo	366	-2.2 (SD 4.73)	NA
Subgroups of patie	ents with	>2 prior treatment >2	nent failures - e	pisodic and	d chronic migrai	ne
			EPT 100 mg	298	-4.1 (SE 0·33)	-2.5 (95% CI: -3.2, -1.9), p<0.0001
		1–12 weeks	EPT 300 mg	290	-4.6 (SE 0.34)	-3.0 (95% CI: -3.6, -2.4), p<0.0001
	Low		Placebo	298	-1.6 (SE 0.34)	NA
DELIVER 2022 ¹¹⁰	Low	13–24 weeks	EPT 100 mg	287	-4.6 (SE 0.36)	-2.9 (95% CI: -3.6, -2.2), p<0.0001
			EPT 300 mg	285	-5.2 (SE 0.36)	-3.5 (95% CI: -4.2, -2.8), p<0.0001
			Placebo	294	-1.7 (SE 0.36)	NA

Table A31 MHDs with acute medication usage, eptinezumab

Abbreviations

CI = confidence interval, EPT = eptinezumab, MD = mean difference, MHDs = monthly headache days, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SD = standard deviation.

Notes

Blue text indicates RACS calculated comparisons.

Table A32 MHDs with acute medication usage, fremanezumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs with acute medication	Difference between treatments	
Episodic mig	graine						
			FRE 225 mg	NR	NR	MD -2.12 (95% CI: -3.15, -1.09), p<0.0001	
		Weeks 1–4	FRE 675 mg	NR	NR	MD -1.98 (95% CI: -3.01, -0.94), p=0.0002	
			Placebo	NR	NR	NA	
			FRE 225 mg	NR	NR	MD -2.32 (95% CI: -3.44, -1.21), p<0.0001	
Bigal et al 2015b ⁶⁵	Low	Weeks 5–8	FRE 675 mg	NR	NR	MD -1.86 (95% CI: -2.97, -0.74), p=0.0012	
			Placebo	NR	NR	NA	
			FRE 225 mg	NR	NR	MD -1.76 (95% CI: -2.86, -0.66), p=0.0018	
		Weeks 9–12	FRE 675 mg	NR	NR	MD -1.70 (95% CI: -2.80, -0.60), p=0.0026	
			Placebo	NR	NR	NA	
		gh 12 weeks	FRE 225 mg	287	-3.0 (95% Cl: -3.41, - 2.56)	MD -1.4 (95% CI: -1.84, - 0.89), p<0.001	
HALO EM ⁶⁸	High		12 weeks FRE 675 mg 2		-2.9 (95% CI: -3.34, - 2.48)	MD -1.3 (95% CI: -1.76, - 0.82), p<0.001	
			Placebo	290	-1.6 (95% CI: -2.04, - 1.20)	NA	
		weeks 1–12	FRE 225 mg	121	-3.3 (SE 0.3)	MD -2.8 (95% CI: -3.55, - 2.14), p<0.0001	
Sakai et al 2021b ⁷¹	Low		FRE 675 mg	117	-3.3 (SE 0.4)	MD -2.8 (95% CI: -3.54, - 2.12), p<0.0001	
			Placebo	116	-0.5 (SE 0.4)	NA	
Chronic mig	raine						
		Weeks 1–4	eeks 1–4 mg NR NR		NR	MD -1.99 (95% CI: -3.6, - - 0.4), p=0.016	
			Placebo	NR	NR	0.4), p=0.010	
Bigal et al 2015a ⁷³	Low	Weeks 5–8	FRE 675/225 mg	NR	NR	MD -2.16 (95% CI: -3.9, - 0.5), p=0.014	
20100			Placebo	NR	NR	0.0), p 0.014	
		Weeks 9–12	FRE 675/225 mg	NR	NR	MD -2.15 (95% CI: -4.0, 0.3), p=0.02	
			Placebo	NR	NR	0.0), p 0.02	
			FRE 225 mg	375	-4.2 (SE 0.3)	MD -2.3 (95% CI: -3.13, - 1.47), p<0.00001	
HALO CM ⁷⁶	Low	12 weeks	12 weeks FRE 675 mg 375 -3.7 (SE		-3.7 (SE 0.3)	MD -1.8 (95% CI: -2.63, - 0.97), p<0.0001	
			Placebo	371	-1.9 (SE 0.3)	NA	
			FRE 225 mg	187	-3.7 (SE 0.4)	MD -1.3 (95% CI: -2.18, - 0.43), p=0.003	
Sakai et al 2021a ⁸³	Low	weeks 1–12	FRE 675 mg	189	-3.9 (SE 0.4)	MD -1.4 (95% CI: -2.30, - 0.56), p=0.001	
			Placebo	190	-2.4 (SE 0.4)	NA	

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs with acute medication	Difference between treatments				
Episodic an	d chroni	c migraine								
			FRE quarterly	276	-3.7 (SE 0.3)	MD -3.1 (95% CI: -3.8, - 2.4), p<0.0001				
FOCUS ⁸⁵	Low	3 months	FRE monthly	283	-3.9 (SE 0.3)	MD -3.4 (95% CI: -4.0, - 2.7), p<0.0001				
			Placebo	278	-0.6 (SE 0.3)	NA				
Subgroups of patients with >2 prior treatment failures - episodic and chronic migraine										
			FRE quarterly	140	-4.2 (0.44)	MD -3.2 (95% CI: -4.18, - 2.27), p<0.0001				
		1 month 2 Tx failures	FRE monthly	133	-4.4 (0.44)	MD -3.5 (95% CI: -4.42, - 2.48), p<0.0001				
			Placebo	141	-0.9 (0.43)	NA				
		1 month 3 Tx failures 1 month 4 Tx failures	FRE quarterly	85	-4.0 (0.51)	MD -3.5 (95% CI: -4.66, - 2.24), p<0.0001				
					-3.9 (0.51)	MD -3.3 (95% CI: -4.51, - 2.19), p<0.0001				
			Placebo	82	-0.5 (0.49)	NA				
			FRE quarterly	49	-4.3 (0.91)	MD -5.4 (95% CI: -7.41, - 3.41), p<0.0001				
			FRE monthly	50	-4.2 (0.80)	MD -5.3 (95% CI: -7.19, - 3.45), p<0.0001				
			Placebo	54	1.1 (0.91)	NA				
FOCUS ⁸⁶	Low		FRE quarterly	140	-4.0 (0.44)	MD -2.9 (95% CI: -3.79, - 1.94), p<0.0001				
		3 months 2 Tx failures	FRE monthly	133	-4.3 (0.44)	MD -3.2 (95% CI: -4.12, - 2.23), p<0.0001				
			Placebo	141	-1.2 (0.43)	NA				
		0	FRE quarterly	85	-3.7 (0.51)	MD -3.2 (95% CI: -4.44, - 2.06), p<0.0001				
		3 months 3 Tx failures	FRE monthly	98	-3.5 (0.51)	MD -3.0 (95% CI: -4.18, - 1.89), p<0.0001				
			Placebo	82	-0.4 (0.49)	NA				
			FRE quarterly	49	-3.6 (0.93)	MD -4.8 (95% CI: -6.80, - 2.81), p<0.0001				
		3 months 4 Tx failures	FRE monthly	50	-4.0 (0.82)	MD -5.2 (95% CI: -7.05, - 3.33), p<0.0001				
			Placebo	54	1.2 (0.94)	NA				

CI = confidence interval, FRE= fremanezumab, MD = mean difference, MHDs = monthly headache days, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SE = standard error, Tx = treatment. Notes

Blue text indicates RACS calculated comparisons.

Table A33 MHDs with acute medication usage, galcanezumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs with acute medication	Difference between treatments
Episodic migraine						
CONQUER ¹⁰⁶	Low	3 months	GAL 120 mg	137	-3.0 (SE 0.3)	MD -2.7 (95% CI: -3.5, -
			Placebo	132	-0.2 (SE 0.3)	1.9), p<0.0001
EVOLVE-189	Low	1–6 months	GAL 120 mg	210	-4 (SE 0.25)	MD -1.8 (95% CI: -2.3, - 1.3), p<0.001
			GAL 240 mg	208	-3.8 (SE 0.26)	MD -1.6 (95% CI: -2.1, - 1.1), p<0.001
			Placebo	425	-2.2 (SE 0.21)	NA
EVOLVE-291	Low	1–6 months	GAL 120 mg	226	-3.7 (SE 0.2)	MD -1.80 (95% CI: - 2.35, -1.25), p<0.00001
			GAL 240 mg	220	-3.6 (SE 0.2)	MD -1.70 (95% CI: - 2.25, -1.15), p<0.00001
			Placebo	450	-1.9 (SE 0.2)	NA
Sakai et al 2020a ⁹³	Low	1–6 months	GAL 120 mg	115	-3.02 (95% CI: - 3.60, -2.43)	MD -2.90 (95% CI: - 3.61, -2.19), p<0.001
			GAL 240 mg	114	-2.81 (95% CI: - 3.40, -2.23)	MD -2.70 (95% CI: - 3.41, -1.99), p<0.001
			Placebo	230	-0.12 (95% CI: - 0.53, 0.30)	NA
Skljarevski et al 2018 ⁹⁸	Low	1–12 weeks	GAL 120 mg	69	-3.59 (SE 0.31)	MD -1.08 (95% CI: - 1.84, -0.32), p=0.005
			Placebo	134	-2.51 (SE 0.23)	
PERSIST 2022 ¹¹²	Low	Months 1-3	GAL 120 mg	260	-2.49 (SE 0.22)	MD -1.78 (95% CI: - 2.25, -1.31), p<0.0001
			Placebo	258	-0.71 (SE 0.22)	NA
Chronic migraine						
CONQUER ¹⁰⁶	Low	3 months	GAL 120 mg	95	-5.4 (SE 0.6)	MD -4.0 (95% CI: -5.4, -
			Placebo	98	-1.4 (SE 0.6)	2.6), p<0.0001
REGAIN ¹⁰²	Low	1–6 months	GAL 120 mg	273	-4.7 (SE 0.4)	MD -2.5 (95% CI: -3.3, - 1.8), p<0.001
			GAL 240 mg	274	-4.3 (SE 0.4)	MD -2.0 (95% CI: -2.8, - 1.3), p<0.001
			Placebo	538	-2.2 (SE 0.3)	NA
Episodic and chron	ic migra	ine				
CGAJ ¹⁰⁵	High	12 months	GAL 120 mg	135	-5.1 (SE 0.4)	MD 0.00 (99%CI: -1.11,
			GAL 240 mg	135	-5.1 (SE 0.4)	1.11), p=1.00
Subgroups of patier	nts with	>2 prior treatme	ent failures - ep	isodic mig	raine	
CONQUER ¹⁰⁷	Low	3 months	GAL 120 mg	56	-3.5 (SE 0.7)	MD -2.8 (SE 0.8),
			Placebo	44	-0.7 (SE 0.8)	p=0.0008
Subgroups of patier	nts with	>2 prior treatme	ent failures - ch	ronic migr	aine	
CONQUER ¹⁰⁷	Low	3 months	GAL 120 mg	42	-7.0 (SE 1.1)	MD -6.2 (SE 1.8),
			Placebo	42	-0.8 (SE 1.0)	p<0.0001
REGAIN ¹⁰³	Low	1–3 months	GAL 120 mg	NR	-5.81 (SE 0.69)	MD -4.46 (SE 0.69), p<0.001
			GAL 240 mg	NR	-3.40 (SE 0.65)	MD -2.06 (SE 0.61),

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean number of MHDs with acute medication	Difference between treatments
						p<0.001
			Placebo	NR	-1.35 (SE 0.53)	NA

<u>Abbreviations</u> CI = confidence interval, GAL = galcanezumab, MD = mean difference, MHDs = monthly headache days, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SE = standard error.

Notes

Blue text indicates RACS calculated comparisons.

Response rate (>50%)

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
Episodic mig	raine				1	
ARISE ¹⁵	Low	3 months	ERU 70 mg	282	112 (39.7)	OR 1.59 (95% CI: 1.12, 2.27),
/IIIOE	LOW	o montais	Placebo	288	282 112 (39.7)	p=0.010
			ERU 70 mg	329	128 (38.9)	OR 1.7 (95% CI: 1.2, 2.4), p=0.001
		1 month	ERU 140 mg	219	104 (47.5)	OR 2.5 (95% CI: 1.7, 3.5), p<0.001
			Placebo	330	89 (27)	NA
			ERU 70 mg	329	175 (53.2)	OR 1.9 (95% CI: 1.4, 2.7), p<0.001
EMPOwER ¹	High	2 months	ERU 140 mg	219	116 (53)	OR 1.9 (95% CI: 1.4, 2.7), p<0.001
			Placebo	330	122 (37)	NA
			ERU 70 mg	329	182 (55.3)	OR 1.5 (95% CI: 1.1, 2.1), p=0.007
		3 months	ERU 140 mg	219	140 (63.9)	OR 2.2 (95% CI: 1.6, 3.2), p<0.001
			Placebo	330	148 (44.8)	NA
	Low	1 month	ERU 140 mg	119	27 (23)	OR 5.9 (95% CI: 2.3, 14.9),
			Placebo	124	6 (5)	p<0.001
LIBERTY ¹⁸		2 months	ERU 140 mg	119	37 (31)	OR 3.3 (95% CI: 1.7, 6.4),
	LOW	2 11011(15	Placebo	124	15 (12)	p<0.001
		3 months	ERU 140 mg	119	36 (30)	OR 2.7 (95% CI: 1.4, 5.2),
		5 11011115	Placebo	124	17 (14)	p=0.002
			ERU 70 mg	135	85 (29.5) 128 (38.9) 104 (47.5) 89 (27) 175 (53.2) 116 (53) 122 (37) 182 (55.3) 140 (63.9) 148 (44.8) 27 (23) 6 (5) 37 (31) 15 (12) 36 (30) 17 (14) 39 (28.9) 37 (27.2) 10 (7.4) 102 (32.7) 113 (35.5) 49 (15.5) 124 (39.7) 143 (45.0)	OR 5.60 (95% CI: 2.60, 12.06), p<0.001
Sakai et al 2019 ²³	Low	4-6 months	ERU 140 mg	136		OR 4.73 (95% CI: 2.24, 9.99), p<0.001
			Placebo	136	10 (7.4)	NA
			ERU 70 mg	312	102 (32.7)	OR 2.65 (95% CI: 1.80, 3.89), p=<0.00001
		1 month	ERU 140 mg	318	113 (35.5)	OR 3.00 (95% CI: 2.05, 4.40), p<0.00001
			Placebo	316	49 (15.5)	NA
STRIVE ²⁶	Low	w 2 months	ERU 70 mg	312	124 (39.7)	OR 2.05 (95% CI: 1.45, 2.88), p<0.0001
			ERU 140 mg	318	143 (45.0)	OR 2.54 (95% CI: 1.81, 3.56), p<0.00001
			Placebo	316	77 (24.4)	NA
		3 months	ERU 70 mg	312	129 (41.3)	OR 1.98 (95% CI: 1.41, 2.77), p<0.0001

 Table A34
 Response rate (>50%), erenumab

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
			ERU 140 mg	318	153 (48.1)	OR 2.60 (95% CI: 1.87, 3.63), p<0.00001
			Placebo	316	83 (26.3)	NA
			ERU 70 mg	312	128 (41.0)	OR 1.72 (95% CI: 1.23, 2.40), p=0.001
		4 months	ERU 140 mg	318	158 (49.7)	OR 2.44 (95% CI: 1.76, 3.39), p<0.00001
			Placebo	316	91 (28.8)	NA
			ERU 70 mg	312	147 (47.1)	OR 2.17 (95% CI: 1.56, 3.01), p<0.00001
		5 months	ERU 140 mg	318	153 (48.1)	OR 2.26 (95% CI: 1.63, 3.13), p<0.00001
			Placebo	316	92 (29.1)	NA
			ERU 70 mg	312	147 (47.1)	OR 2.14 (95% CI: 1.54, 2.97), p<0.00001
		6 months	ERU 140 mg	318	156 (49.1)	OR 2.31 (95% CI: 1.67, 3.20), p<0.00001
			Placebo	316	93 (29.4)	NR
			ERU 70 mg	312	135 (43.3)	OR 2.13 (95% CI: 1.52, 2.98), p<0.001
		4–6 months	ERU 140 mg	318	159 (50.0)	OR 2.81 (95% CI: 2.01, 3.94), p<0.001
			Placebo	316	84 (26.6)	NA
Sun et al	Low	Low 12 weeks	ERU 70 mg	99	46 (46)	OR 2.0 (95% CI: 1.2, 3.4),
201635	LOW		Placebo	144	318 159 (50.0) 316 84 (26.6) 99 46 (46)	p=0.011
Chronic migra	aine			1	Γ	Γ
Tenner et el			ERU 70 mg	188	75 (40)	OR 2.2 (95% CI: 1.5, 3.3), p=0.0001
Tepper et al 2017 ⁴⁰	Low	3 months	ERU 140 mg	316 133 (48.1) 316 83 (26.3) 312 128 (41.0) 318 158 (49.7) 316 91 (28.8) 312 147 (47.1) 318 153 (48.1) 316 92 (29.1) 316 92 (29.1) 317 147 (47.1) 318 156 (49.1) 318 156 (49.1) 318 156 (49.1) 311 135 (43.3) 318 159 (50.0) 318 159 (50.0) 316 84 (26.6) 99 46 (46) 144 43 (30) 188 75 (40) 187 77 (41) 279 92 (33) 278 51 (18.3) 279 122 (43.7) 278 87 (31.3) 279 131 (47) 388 215 (55.4)	OR 2.3 (95% CI: 1.6, 3.5), p<0.0001	
			Placebo	281	66 (23)	NA
		Week 4	ERU 70 mg	279	92 (33)	OR 2.19 (95% CI: 1.48, 3.25), p<0.001
			Placebo	278	51 (18.3)	NA
DRAGON 2022 ¹⁰⁹	Some concer	Week 8	ERU 70 mg	279	122 (43.7)	OR 1.72 (95% CI: 1.21, 2.45), p=0.002
2022.00	ns		Placebo	278	87 (31.3)	NA
		Week 12	ERU 70 mg	279	131 (47)	OR 1.54 (95% CI: 1.09, 2.17), p=0.014
			Placebo	278	102 (36.7)	NA
Episodic and	chronic m	igraine				
HER-MES ^{49*}		24 weeks	ERU 70 or 140 mg	388	215 (55.4)	OR 2.76 (95% CI: 2.06, 3.71) RR 1.78 (95% CI: 1.50, 2.11),
	Low	24 weeks	Topiramate 25–100 mg	388	121 (31.2)	p<0.001
Subgroups of	patients v	vith >2 prior trea	tment failures - o	episodio	c migraine	

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
LIBERTY ¹⁸	Low	Week 12	ERU 140 mg	72	8 (11.1)	OR 2.9 (95% CI: 1.2, 7.0),
	LOW	WEEK 12	Placebo	76	20 (26.3)	p=0.019
			ERU 70 mg	49	9 (18.4)	OR 2.21 (95% CI: 0.68, 7.11), p=0.19
		1 month	ERU 140 mg	58	17 (29.3)	OR 4.06 (95% CI: 1.38, 11.97), p=0.01
			Placebo	54	5 (9.3)	NA
			ERU 70 mg	49	13 (26.5)	OR 2.08 (95% Cl: 0.78, 5.55), p=0.15
		2 months	ERU 140 mg	58	24 (41.4)	OR 4.06 (95% CI: 1.63, 10.13), p=0.003
STRIVE ³⁰	Low		Placebo	54	8 (14.8)	NA
SIRIVE	LOW	3 months	ERU 70 mg	49	13 (26.5)	OR 2.08 (95% Cl: 0.78, 5.55), p=0.15
			ERU 140 mg	58	27 (46.6)	OR 5.01 (95% CI: 2.01, 12.45), p=0.0005
			Placebo	54	8 (14.8)	NA
		4-6 months	ERU 70 mg	49	13 (26.5)	OR 2.9 (95% CI: 1.0, 8.3), p=0.05
			ERU 140 mg	58	21 (36.2)	OR 4.5 (95% CI: 1.7, 12.4), p=0.003
			Placebo	54	6 (11.1)	NA
Subgroups of	f patients v	vith >2 prior trea	tment failures - (chronic	migraine	
Tepper et al 2017 ⁴¹	Low	3 months	ERU 70 mg	93	33 (35.6)	OR 3.5 (95% CI: 1.8, 6.6), p<0.001
			ERU 140 mg	92	38 (41.3)	OR 4.2 (95% CI: 2.2, 7.9), p<0.001
			Placebo	142	20 (14.2)	NA
Subgroups of	f patients v	vith >2 prior trea	tment failures -	episodio	c and chronic migr	aine
Takeshima et al	Low	4–6 months	ERU 70 mg	130	41 (31.5)	OR 2.33 (95% CI: 1.29, 4.23),
202151**	-		Placebo	131	22 (16.8)	p=0.005

CI = confidence interval, ERU = erenumab, n = number of patients, OR = odds ratio, NA = not applicable, NR = not reported, **RoB** = risk of bias, **RR** = relative risk.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In HER-MES, the following number of patients were included: For erenumab, 4–7 MMDs = 94 (24.2%), Episodic = 248 (63.9%), Chronic = 43 (11.1%). For topiramate, 4–7 MMDs = 92 (23.7%). Episodic (8–14 MMDs) = 254 (65.5%). Chronic (\geq 15 MMDs) = 42 (10.8%). ** Takeshima et al 2021 did not report the number of patients who had chronic or episodic migraine.

Table A35 Response rate (>50%), eptinezumab

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups	
Episodic migraine							

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
			EPT 100 mg	221	110 (49.8)	OR 1.662 (95% CI NR), p=0.0085
		1–12 weeks	EPT 300 mg	222	125 (56.3)	OR 2.158 (95% CI NR), p=0.0001
PROMISE-	Lliab		Placebo	222	83 (37.4)	NA
1 ^{54,55}	High		EPT 100 mg	221	137 (62.0)	OR 1.55 (95% CI: 1.06, 2.26), p=0.02
		13–24 weeks	EPT 300 mg	222	145 (65.3)	OR 1.78 (95% CI: 1.22, 2.61), p=0.003
			Placebo	222	114 (51.4)	NA
Chronic mig	raine					
	Some	Weeks 1–12	EPT 300 mg	114	65 (57)	OR 1.95 (95% CI: 1.15, 3.29), p=0.013
Dodick et al 2019 ⁵⁷	concer		EPT 100 mg	118	65 (55.1)	OR 1.80 (95% CI: 1.07, 3.02), p=0.029
2010	ns		Placebo	116	47 (40.5)	NR
		1–12 weeks	EPT 100 mg	356	205 (57.6)	OR 2.1 (95% CI: 1.6, 2.8), p<0.0001
	Low		EPT 300 mg	350	215 (61.4)	OR 2.4 (95% CI: 1.8, 3.3), p<0.0001
PROMISE-			Placebo	366	144 (39.3)	NA
2 ^{58,63}		13–24 weeks	EPT 100 mg	356	217 (61.0)	OR 1.99 (95% CI: 1.48, 2.67), p<0.00001
			EPT 300 mg	350	224 (64.0)	OR 2.66 (95% CI: 1.68, 3.06), p<0.00001
			Placebo	366	161 (44.0)	NA
Subgroups o	of patients	s with >2 prior	treatment failu	res - ep	isodic and chr	onic migraine
			EPT 100 mg	299	126 (42)	OR 4.9 (95% CI: 3.3, 7.5), p<0.0001
		Weeks 1-12	EPT 300 mg	293	145 (49)	OR 6.6 (95% CI: 4.4, 10.0), p<0.0001
			Placebo	298	39 (13)	NA
DELIVER 2022 ¹¹⁰	Low	Weeks 13-24	EPT 100 mg	287	150 (52)	OR 3.56 (95% CI: 2.50, 5.10), p<0.0001
			EPT 300 mg	286	169 (59)	OR 4.69 (95% CI: 3.29, 6.75), p<0.0001
			Placebo	295	70 (24)	NA

 \overline{CI} = confidence interval, EPT = eptinezumab, n = number of patients, OR = odds ratio, NA = not applicable, NR = not reported, RoB = risk of bias.

Notes

Blue text indicates RACS calculated comparisons.

Table A36 Response rate (>50%), fremanezumab

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
Episodic migra	aine					
		ow Weeks 1–4 FRE Place Weeks 5–8 FRE	FRE 225 mg	95	42 (44)	OR 3.33 (95% CI: 1.77, 6.27), p=0.0001
Bigal et al			FRE 675 mg	96	50 (52)	OR 4.57 (95% CI: 2.43, 8.58), p<0.0001
2015b ⁶⁵	Low		Placebo	104	20 (19)	NA
			FRE 225 mg	95	52 (55)	OR 2.28 (95% CI: 1.29, 4.04), p=0.0043
			FRE 675 mg	96	53 (55)	OR 2.33 (95% CI: 1.32, 4.12),

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
						p=0.0034
			Placebo	104	36 (35)	NA
			FRE 225 mg	95	53 (56)	OR 2.38 (95% Cl: 1.35, 4.22), p=0.0027
		Weeks 9–12	FRE 675 mg	96	55 (57)	OR 2.53 (95% CI: 1.43, 4.49), p=0.0013
			Placebo	104	36 (35)	NA
			FRE 225 mg	287	137 (47.7)	Difference vs placebo 19.8 (95% Cl: 12.0, 27.6), p<0.001
		1–12 weeks	FRE 675 mg	288	128 (44.4)	Difference vs placebo 16.5 (95% Cl: 8.9, 24.1), p<0.001
HALO EM ^{68,70}	Lliah		Placebo	290	81 (27.9)	NA
	High		FRE 225 mg	263	130 (51.2)	OR 1.64 (95% CI: 1.16, 2.32), p=0.005
		12 weeks	FRE 675 mg	269	132 (49)	OR 1.62 (95% CI: 1.15, 2.28), p=0.006
			Placebo	268	100 (37.2)	NA
	Low	12 weeks	FRE 225 mg	121	50 (41.3)	Difference vs placebo 30.1 (95% Cl: 19.6, 40.6), p<0.0001
Sakai et al 2021b ⁷¹			FRE 675 mg	117	53 (45.3)	Difference vs placebo 34.1 (95% Cl: 23.4, 44.7), p<0.0001
			Placebo	116	13 (11.2)	NA
Chronic migra	ine	T			T	
	Low	Weeks 1–4 Weeks 5–8	FRE 675/225 mg	87	36 (41)	OR 2.2 (95% Cl: 1.1, 4.1), p=0.019
			Placebo	89	22 (25)	
Bigal et al 2015a ⁷⁴			FRE 675/225 mg	87	42 (48)	OR 1.44 (95% CI: 0.79, 2.62), p=0.231
			Placebo	89	35 (39)	P 00.
		Weeks 9–12	FRE 675/225 mg	87	46 (53)	OR 2.44 (95% CI: 1.3, 4.5), p=0.004
			Placebo	89	28 (31)	
		1–12 weeks	FRE 225 mg	375	153 (41)	OR 3.13 (95% CI: 2.24, 4.37), p<0.001
			FRE 675 mg	375	141 (38)	OR 2.73 (95% CI: 1.95, 3.83), p<0.001
HALO CM ^{76,82}	Low		Placebo	371	67 (18)	NA
	LOW	12 weeks	FRE 225 mg	345	154 (44.5)	OR 3.64 (95% CI: 2.57, 5.15), p<0.001
			FRE 675 mg	350	142 (40.5)	OR 3.08 (95% CI: 2.18, 4.37), p<0.001
			Placebo	342	62 (18.1)	NA
Sakai et al		1 10 weeks	FRE 225 mg	186	54 (29.0)	Difference vs placebo 15.9 (95% Cl: 7.8, 24.0), p<0.001
2021a ⁸³	LOW	Low 1–12 weeks	FRE 675 mg	189	55 (29.1)	Difference vs placebo 15.9 (95% Cl: 7.9, 24.0), p<0.001

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
			Placebo	190	25 (13.2)	NA
Episodic and o	chronic n	nigraine				
		1 month	FRE quarterly	276	105 (38)	OR 5.8 (95% CI: 3.6, 9.3), p<0.0001
			FRE monthly	283	101 (36)	OR 5.3 (95% CI: 3.3, 8.4), p<0.0001
	Low		Placebo	278	28 (10)	NA
FOCUS ^{85*}	Low	Low	FRE quarterly	276	95 (34)	OR 5.8 (95% CI: 3.6, 9.6), p<0.0001
		3 months	FRE monthly	283	97 (34)	OR 5.8 (95% CI: 3.6, 9.5), p<0.0001
			Placebo	278	24 (9)	NA

CI = confidence interval, **FRE** = fremanezumab, **n** = number of patients, **OR** = odds ratio, **NA** = not applicable, **RoB** = risk of bias.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In the FOCUS trial, there were three treatment groups; FRE quarterly, monthly and placebo. In the FRE quarterly group, patients received 675 mg FRE and 107 (39%) had episodic migraine, while 169 (61%) had chronic migraine. In the FRE monthly group 110 (39%) patients had episodic migraine and received 225 mg FRE monthly while 173 (61%) of patients had chronic migraine and received 675 mg FRE as a loading dose then 225 mg monthly. In the placebo group, 112 (40%) of patients had episodic migraine.

Study name	ROB	Timepoint of assessment	Interventio n and dose	n	Number of responses (%)	Difference between groups		
Episodic migraine								
Dodick et al 2014a ⁸⁸	Low	3 months	GAL 150 mg	98	69 (70.4)	OR 2.88 (90% CI: 1.78-4.69), p=0.0003		
2014800			Placebo	104	47 (45.2)	p=0.0003		
			GAL 120 mg	210	Mean 62.3% (SE 2.4)	OR 2.63 (95% CI: 2.05, 3.37), p<0.001		
EVOLVE-189	EVOLVE-189 Low	ow 6 months	GAL 240 mg	208	Mean 60.9% (SE 2.5)	OR 2.48 (95% CI: 1.94, 3.18), p<0.001		
			Placebo	425	Mean 38.6% (SE 1.7)	NA		
		.ow 1–6 months	GAL 120 mg	226	Mean 59.3% (SE 2.4)	NR, p<0.001		
EVOLVE-291	Low		GAL 240 mg	220	Mean 56.5% (SE 2.5)	NR, p<0.001		
			Placebo	450	Mean 36% (SE 1.7)	NA		

Table A37 Response rate (>50%), galcanezumab

Study name	ROB	Timepoint of assessment	Interventio n and dose	n	Number of responses (%)	Difference between groups
			GAL 120 mg	115	57 (49.8)	OR 3.83 (95% CI: 2.35, 6.22), p<0.001
Sakai et al 2020a ⁹³	Low	1–6 months	GAL 240 mg	114	55 (48.2)	OR 3.63 (95% CI: 2.23, 5.91), p<0.001
			Placebo	230	47 (20.3)	NA
Skljarevski et al 201898	Low	1–12 weeks	GAL 120 mg	69	53 (76.5)	OR 2.10 (95%CI: 1.09, 4.06), p=0.03
al 201000			Placebo	134	82 (60.9)	ρ=0.05
PERSIST	1.000	Mantha 1, 2	GAL 120 mg	260	Mean 54.9% (SE 2.4)	OR 2.48 (95% CI: 1.87, 3.29), p< 0.0001
2022 ¹¹²	Low	Months 1–3	Placebo	258	Mean 32.9% (SE 2.3)	NA
Chronic migra	ine					
		v 1–3 months	GAL 120 mg	273	27.6 (2.7)	OR 2.1 (95% CI: 1.6, 2.8), p<0.001
REGAIN ^{102,10} 4	Low		GAL 240 mg	274	27.5 (2.6)	OR 2.1 (95% CI: 1.6, 2.8), p<0.001
			Placebo	538	15.4 (1.6)	NA
Episodic and	chronic m	igraine				
CGAJ ^{105*}	High	12 months	GAL 120 mg	135	89 (65.6)	OR 0.70 (95% CI: 0.42, 1.19),
CGAJ	підп	12 montins	GAL 240 mg	135	99 (73.7)	p=0.19
Subgroups of	patients v	with >2 prior trea	tment failures	- chroni	ic migraine	
		1–3 months	GAL 120 mg	NR	29.6 (4.7)	OR 2.22 (95% CI: 1.26, 3.92)
REGAIN ¹⁰³	Low		GAL 240 mg	NR	18.7 (3.3)	OR 4.05 (95% CI: 2.25, 7.31)
			Placebo	NR	9.4 (1.9)	NA

CI = confidence interval, **GAL** = galcanezumab, **n** = number of patients, **OR** = odds ratio, **NA** = not applicable, **NR** = not reported, **RoB** = risk of bias, **SE** = standard error.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In the CGAJ trial there were two treatment groups; GAL 120 mg and GAL 240 mg. In the GAL 120 mg group 80.7% of patients had episodic migraine and 19.3% of patients had chronic migraine. In the 240 mg group, 77.0% of patients had episodic migraine and 23.0% of patients had chronic migraine.

Response rate (>75%)

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of response s (%)	Difference between groups
Episodic migr	aine					
EMPOwER ¹⁷	High	1 month	ERU 70 mg	329	58 (17.6)	OR 1.2 (95% CI: 0.8, 1.8), p=0.386
			ERU 140 mg	219	58 (26.5)	OR 2.0 (95% CI: 1.3, 3.1), p=0.001
			Placebo	330	50 (15.2)	NA
		2 months	ERU 70 mg	329	101 (30.7)	OR 1.5 (95% CI: 1.1, 2.2), p=0.016
			ERU 140 mg	219	71 (32.4)	OR 1.7 (95% CI: 1.1, 2.5), p=0.009
			Placebo	330	74 (22.4)	NA
		3 months	ERU 70 mg	329	124 (37.7)	OR 1.7 (95% CI: 1.2, 2.4), p=0.001
			ERU 140 mg	219	94 (42.9)	OR 2.2 (95% CI: 1.5, 3.1), p<0.001
			Placebo	330	86 (26.1)	NA
LIBERTY ¹⁸	Low	1 month	ERU 140 mg	119	11 (9)	OR 26.39 (95% CI: 1.54, 453.12),
			Placebo	124	0	p=0.02
		2 months	ERU 140 mg	119	9 (8)	OR 3.3 (95% CI: 0.9, 12.3), p=0.1
			Placebo	124	3 (2)	
		3 months	ERU 140 mg	119	14 (12)	OR 3.2 (95% CI: 1.1, 9.0),
			Placebo	124	5 (4)	p=0.025
STRIVE ³⁰	Low	1 month	ERU 70 mg	49	1 (2)	OR 3.37 (95% CI: 0.13, 84.70), p=0.46
			ERU 140 mg	58	5 (8.6)	OR 11.21 (95% CI: 0.60, 207.67), p=0.10
			Placebo	54	0 (0)	NA
		2 months	ERU 70 mg	49	3 (6.1)	OR 1.70 (95% CI: 0.27, 10.60), p=0.57
			ERU 140 mg	58	12 (20.7)	OR 6.78 (95% CI: 1.44, 31.91) 0=0.02
			Placebo	54	2 (3.7)	NA
		3 months	ERU 70 mg	49	7 (14.3)	OR 8.83 (95% CI: 1.05, 74.63), p=0.05
			ERU 140 mg	58	12 (20.7)	OR 13.83 (95% CI: 1.73, 110.44), p=0.01
			Placebo	54	1 (1.9)	NA
		4–6 months	ERU 70 mg	49	5 (10.2)	OR 13.47 (95% CI: 0.73, 250.29), p=0.08
			ERU 140 mg	58	5 (8.6)	OR 11.21 (95% CI: 0.60, 207.67), p=0.10

Table A38 Response rate (>75%), erenumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of response s (%)	Difference between groups
			Placebo	54	0 (0)	NA
Chronic migra	ine					
Tepper et al 2017 ⁴¹	Low	3 months	ERU 70 mg	93	10 (11.1)	OR 3.6 (95% CI: 1.2, 10.9), p<0.05
			ERU 140 mg	92	25 (21.7)	OR 8.0 (95% CI: 2.8, 23.0), p<0.001
			Placebo	142	5 (3.5)	NA
Subgroups of	patients v	with >2 prior trea	tment failures - e	episodic r	nigraine	
LIBERTY ¹⁸	Low	Week 12	Placebo	76	9 (11.8)	OR 3.0 (95% CI: 0.8, 11.5), p=0.089
			ERU 140 mg	72	3 (4.2)	

CI = confidence interval, ERU = erenumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias. Notes

Blue text indicates RACS calculated comparisons.

Table A39 Response rate (>75%), eptinezumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups			
Episodic mig	Episodic migraine								
			EPT 100 mg	221	68 (30.8)	OR 1.752 (95% CI NR), p=0.0112			
		1–4 weeks	EPT 300 mg	222	70 (31.5)	OR 1.817 (95% CI NR), p=0.0066			
			Placebo	222	45 (20.3)	NA			
			EPT 100 mg	221	49 (22.2)	OR 1.47 (95% CI NR), p=0.1126			
PROMISE-		1–12 weeks	EPT 300 mg	222	66 (29.7)	OR 2.179 (95% CI NR), p=0.0007			
154,55	High		Placebo	222	36 (16.2)	NA			
		13–24 weeks	EPT 100 mg	221	74 (33.5)	OR 1.53 (95% CI: 1.01, 2.31), p=0.04			
			EPT 300 mg	222	89 (40.1)	OR 2.03 (95% CI: 1.35, 3.05), p=0.0006			
			Placebo	222	55 (24.8)	NA			
Chronic migra	aine								
			EPT 300 mg	114	38 (33.3)	OR 1.92 (95% CI: 1.06, 3.47), p=0.033			
Dodick et al 2019 ⁵⁷	Some concerns	1–12 weeks	EPT 100 mg	118	37 (31.4)	OR 1.75 (95% CI: 0.97, 3.17), p=0.072			
			Placebo	116	24 (20.7)	NA			
			EPT 100 mg	356	110 (30.9)	OR 2.4 (95% CI: 1.7, 3.5), p<0.0001			
PROMISE- 2 ^{58,63}	Low	1–4 weeks	EPT 300 mg	350	129 (36.9)	OR 3.2 (95% CI: 2.2, 4.6), p<0.0001			
			Placebo	366	57 (15.6)	NA			
			EPT 100 mg	356	95 (26.7)	OR 2 (95% CI: 1.4,3.0), p=0.0001			

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
		1–12 weeks	EPT 300 mg	350	116 (33.1)	OR 2.8 (95% CI: 1.9, 4.0), p<0.0001
			Placebo	366	55 (15.0)	NA
			EPT 100 mg	356	140 (39.3)	OR 2.08 (95% CI: 1.51, 2.87), p<0.00001
		13–24 weeks	EPT 300 mg	350	151 (43.1)	OR 2.43 (95% CI: 1.77, 3.35), p<0.00001
			Placebo	366	87 (23.8)	NA
Subgroups of	patients wi	th >2 prior treatr	nent failures - ep	isodic a	nd chronic mi	graine
			EPT 100 mg	299	47 (16)	OR 9.2 (95% CI: 4.2, 24.4), p<0.0001
		Weeks 1-12	EPT 300 mg	293	55 (19)	OR 11.4 (95% CI: 5.2, 30.2), p<0.0001
DELIVER	Low		Placebo	298	6 (2)	NA
2022 ¹¹⁰	LOW		EPT 100 mg	287	61 (21)	OR 3.8 (95% CI: 2.2, 6.6), p<0.0001
		Weeks 13-24	EPT 300 mg	286	79 (28)	OR 5·3 (95% CI: 3.20, 9.20), p<0.0001
			Placebo	295	20 (7)	NA

<u>Abbreviations</u> CI = confidence interval, EPT = eptinezumab, n = number of patients, OR = odds ratio, NA = not applicable, NR = not reported, **RoB** = risk of bias.

Notes

Table A40	Response rate (>75%), fremanezumab
-----------	------------------------------------

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
Episodic migr	aine					
Bigal et al 2015b ⁶⁵	Low	Weeks 1–4	FRE 225 mg	95	28 (29)	OR 5.01 (95% CI: 2.15, 11.68), p=0.0001
			FRE 675 mg	96	22 (23)	OR 3.57 (95% CI: 1.50, 8.47), p=0.0026
			Placebo	104	8 (8)	NA
		Weeks 5–8	FRE 225 mg	95	30 (32)	OR 2.74 (95% CI: 1.36, 5.50), p=0.0039
			FRE 675 mg	96	34 (35)	OR 3.25 (95% CI: 1.63, 6.48), p=0.0006
			Placebo	104	15 (14)	NA
		Weeks 9–12	FRE 225 mg	95	34 (36)	OR 2.34 (95% CI: 1.23, 4.45), p=0.0087
			FRE 675 mg	96	39 (41)	OR 2.87 (95% CI: 1.52, 5.42), p=0.0009
			Placebo	104	20 (19)	NA
Episodic and	chronic m	igraine		•		

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
FOCUS ^{85*}	Low 3 months	FRE quarterly	276	23 (8)	OR 4.2 (95% CI: 1.7, 10.6), p=0.0021	
			FRE monthly	283	35 (12)	OR 6.6 (95% CI: 2.7, 16.1), p<0.0001
			Placebo	278	6 (2)	NA

CI = confidence interval, FRE = fremanezumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias.

Notes

Blue text indicates RACS calculated comparisons.

* In the FOCUS trial, there were three treatment groups; FRE quarterly, monthly and placebo. In the FRE quarterly group, patients received 675 mg FRE and 107 (39%) had episodic migraine, while 169 (61%) had chronic migraine. In the FRE monthly group 110 (39%) patients had episodic migraine and received 225 mg FRE monthly while 173 (61%) of patients had chronic migraine and received 675 mg FRE as a loading dose then 225 mg monthly. In the placebo group, 112 (40%) of patients had episodic migraine while 167 (60%) had chronic migraine.

Table A41 Response rate (>75%), galcanezumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
Episodic migraine					•	
Dodick et al	Low	3 months	GAL150 mg	98	48 (49)	OR 2.54 (90% CI: 1.56-
2014 ⁸⁸			Placebo	104	28 (26.9)	4.13)
EVOLVE-189	Low	6 months	GAL 120 mg	210	Mean 38.8% (SE 2.4)	OR 2.65 (95% CI: 2.04, 3.45), p<0.001
			GAL 240 mg	208	Mean 38.5% (SE 2.4)	OR 2.62 (95% CI: 2.01, 3.41), p<0.001
			Placebo	425	Mean 19.3% (SE 1.4)	NA
EVOLVE-291	Low 1–6 months	GAL 120 mg	226	Mean 33.5% (SE 2.3)	p<0.001	
			GAL 240 mg	220	Mean 34.3% (SE 2.3)	p<0.001
			Placebo	450	Mean 17.8% (SE 1.3)	NR
Sakai et al 2020a ⁹³	Low	1–6 months	GAL 120 mg	115	29 (25.5)	OR 3.19 (95% CI: 1.73, 5.86), p<0.001
			GAL 240 mg	114	28 (25)	OR 3.08 (95% CI: 1.67, 5.68), p<0.001
			Placebo	230	22 (9.6)	NA
PERSIST 2022 ¹¹²	Low	Low Months 1–3	GAL 120 mg	260	Mean 29.2% (SE 2.1)	OR 2.82 (95% CI: 2.01, 3.97), p< 0.0001
			Placebo	258	Mean 12.7% (SE 1.6)	NA
Chronic migraine						
REGAIN ^{102,104}	Low	Averages across	GAL 120 mg	273	7.0 (1.4)	OR 1.6 (95% CI: 1.0, 2.5), p=0.031

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
		months 1–3	GAL 240 mg	274	8.8 (1.7)	OR 2.0 (95% CI: 1.4, 3.1), p<0.001
			Placebo	538	4.5 (0.9)	NA
Episodic and chro	nic migr	aine				
CGAJ ^{105*}	High	12 months	GAL 120 mg	135	60 (44.5)	OR 0.72 (95% CI: 0.45,
			GAL 240 mg	135	71 (52.5)	1.16), p=0.18
Subgroups of patie	ents witl	h >2 prior treatm	nent failures - c	hronic	migraine	
REGAIN ¹⁰³	Low	months 1–3	GAL 120 mg	NR	6.3 (2.2)	OR 2.27 (95% CI: 0.95, 5.42)
			GAL 240 mg	NR	5 (1.6)	OR 2.87 (95% CI: 1.11, 7.41)
			Placebo	NR	2.3 (0.8)	NA

CI = confidence interval, **GAL** = galcanezumab, **n** = number of patients, **OR** = odds ratio, **NA** = not applicable, **NR** = not reported, **RoB** = risk of bias, **SE** = standard error.

Notes

Blue text indicates RACS calculated comparisons.

* In the CGAJ trial there were two treatment groups; GAL 120 mg and GAL 240 mg. In the GAL 120 mg group 80.7% of patients had episodic migraine and 19.3% of patients had chronic migraine. In the 240 mg group, 77.0% of patients had episodic migraine and 23.0% of patients had chronic migraine.

Response rate (100%)

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
Episodic migra	aine					
			ERU 70 mg	329	22 (6.7)	OR 0.8 (95% CI: 0.5, 1.4), p = 0.467
		1 month	ERU 140 mg	219	26 (11.9)	OR 1.5 (95% CI: 0.9, 2.7), p = 0.151
			Placebo	330	27 (8.2)	NA
		2 months	ERU 70 mg	329	47 (14.3)	OR 1.2 (95% CI: 0.8, 1.9), p = 0.403
EMPOwER ¹⁷	High		ERU 140 mg	219	38 (17.4)	OR 1.5 (95% CI: 0.9, 2.5), p = 0.084
			Placebo	330	40 (12.1)	NA
		3 months	ERU 70 mg	329	73 (22.2)	OR 1.7 (95% CI: 1.2, 2.6), p = 0.008
			ERU 140 mg	219	50 (22.8)	OR 1.8 (95% CI: 1.2, 2.8), p = 0.009
			Placebo	330	47 (14.2)	NA
		1 month	ERU 140 mg	119	4 (3)	OR 9.70 (95% CI: 0.52, 182.17),
			Placebo	124	0	p=0.13
LIBERTY ¹⁸	Low		ERU 140 mg	119	3 (3)	OR 7.48 (95% CI: 0.38, 146.39),
	LOW	2 months	Placebo	124	0	p=0.18
		3 months	ERU 140 mg	119	7 (6)	OR 16.60 (95% CI: 0.94, 293.96),
		5 11011015	Placebo	124	0	p=0.06

Table A42 Response rate (100%), erenumab

Abbreviations

CI = confidence interval, ERU = erenumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias. Notes

Blue text indicates RACS calculated comparisons.

Table A43 Response rate (100%), eptinezumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups				
Episodic migra	Episodic migraine									
	High	1–12 weeks	EPT 100 mg	221	25 (11.43)	OR 1.29 (95% CI: 0.69, 2.39), p=0.42				
PROMISE-155			EPT 300 mg	222	37 (16.79)	OR 2.02 (95% CI: 1.13, 3.61), p=0.02				
	-		Placebo	222	20 (9.14)	NA				
		13–24	EPT 100 mg	221	44 (19.71)	OR 1.48 (95% CI: 0.90, 2.43), p=0.13				

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
	weeks		EPT 300 mg	222	54 (24.45)	OR 1.91 (95% CI: 1.18, 3.10), p=0.009
			Placebo 222 32 (14.26)		32 (14.26)	NA
Chronic migra	ine					
		1–12 weeks	EPT 100 mg	356	38 (10.8)	OR 2.1 (95% CI: 1.23, 3.86), p<0.0001
			EPT 300 mg	350	53 (15.1)	OR 2.4 (95% CI: NR), p<0.0001
PROMISE-			Placebo	366	19 (5.1)	NA
263,64	Low	13–24 weeks	EPT 100 mg	356	63 (17.8)	OR 2.10 (95% CI: 1.34, 3.28), p=0.001
			EPT 300 mg	350	73 (20.8)	OR 2.57 (95% CI: 1.66, 3.98), p<0.0001
			Placebo	366	34 (9.3)	NA

CI = confidence interval, **EPT** = eptinezumab, **n** = number of patients, **OR** = odds ratio, **NA** = not applicable, **NR** = not reported, **RoB** = risk of bias.

Notes 1

Blue text indicates RACS calculated comparisons.

Table A44 Response rate (100%), fremanezumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups				
Episodic and chronic migraine										
		3 months	FRE quarterly	276	0	Not estimable				
FOCUS ⁸⁵	Low		FRE monthly	283	4 (1)	OR 8.97 (95% CI: 0.48, 167.35), p=0.14				
			Placebo	278	0	NA				

Abbreviations

CI = confidence interval, FRE = fremanezumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias.

<u>Notes</u>

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Number of responses (%)	Difference between groups
Episodic migra	aine					
Dodick et al 2014a ⁸⁸	Low	3 months	GAL 150 mg	98	31 (31.6)	OR 2.16 (90% CI: 1.24-3.75), p=0.02
			Placebo	104	18 (17.3)	NR
EVOLVE-189	Low	6 months	GAL 120 mg	210	Mean 15.6% (SE 1.6)	OR 2.80 (95% CI: 1.96, 4.01), p<0.001
			GAL 240 mg	208	Mean 14.6% (SE 1.6)	OR 2.61 (95% CI: 1.81, 3.75), p<0.001
			Placebo	425	Mean 6.2% (SE 0.8)	NA
EVOLVE-291	Low	1–6 months	GAL 120 mg	226	Mean 11.5% (SE 1.4)	NR p<0.001
			GAL 240 mg	220	Mean 13.8% (SE 1.5)	NR p<0.001
			Placebo	450	Mean 5.7% (SE 0.7)	NR
Sakai et al 2020a ⁹³	Low	.ow 1–6 months	GAL 120 mg	115	10 (9)	OR 3.03 (95% CI: 1.12, 8.19), p<0.001
			GAL 240 mg	114	9 (8.1)	OR 2.73 (95% CI: 0.99, 7.53), p<0.001
			Placebo	230	7 (2.8)	NR
PERSIST 2022 ¹¹²	Low	Months 1–3	GAL 120 mg	260	Mean 11.9% (SE 1.4)	OR 3.31 (95% CI: 1.99, 5.50), p<0.0001
			Placebo	258	Mean 3.9% (SE 0.9)	NA
Chronic migra	ine					
REGAIN ^{102,104}	Low	1–3 months	GAL 120 mg	273	0.7 (0.4)	OR 1.4 (95% CI: 0.4, 4.4), p=0.597
			GAL 240 mg	274	1.3 (0.6)	OR 2.6 (95% CI: 1.0, 7.0), p=0.058
			Placebo	538	0.5 (0.3)	NA
Chronic and e	pisodic	migraine				
CGAJ ¹⁰⁵	High	12 months	GAL 120 mg	135	29 (21.4)	Not estimable
			GAL 240 mg	135	29 (21.4)	

Table A45 Response rate (100%), galcanezumab

Abbreviations

CI = confidence interval, **GAL** = galcanezumab, **n** = number of patients, **OR** = odds ratio, **NA** = not applicable, **NR** = not reported, **RoB** = risk of bias, **SE** = standard error.

Notes

MSQ

Trial name	ROB	Timepoint of assessment	Outcome	Intervention and dose	n	Change from baseline	Difference between treatments
Episodic n	nigraine			•			
			MSQ RFR	ERU 70 mg Placebo	282 288	15.2 (SE 1.0) 9.7 (SE 1.0)	MD 5.5 (95% CI: 2.8, 8.2), p<0.001
ARISE ¹⁵	Low	3 months	MSQ RFP	ERU 70 mg Placebo	282 288	12.0 (SE 0.9) 8.4 (SE 0.9)	MD 3.6 (95% CI: 1.1, 6.0), p=0.005
			MSQ EF	ERU 70 mg Placebo	282 288	11.8 (SE 1.1) 7.3 (SE 1.1)	MD 4.5 (95% CI: 1.6, 7.4), p=0.002
				ERU 70 mg	312	16.8 (SE 0.85)	MD 5.1 (95% CI:2.8, 7.4), p<0.001
			MSQ RFR	ERU 140 mg	318	18.1 (SE 0.84)	MD 6.5 (95% Cl:4.2, 8.8), p<0.001
				Placebo	316	11.7 (SE 0.85)	NA
				ERU 70 mg	312	12.7 (SE 0.76)	MD 4.2 (95% CI:2.2, 6.3), p<0.001
STRIVE ²⁸	Low	4–6 months	MSQ RFP	ERU 140 mg	318	13.9 (SE 0.75)	MD 5.4 (95% Cl:3.4, 7.5), p<0.001
				Placebo	316	8.5 (SE 0.76)	NA
				ERU 70 mg	312	12.9 (SE 0.87)	MD 5.2 (95% Cl:2.8, 7.6), p<0.001
			MSQ EF	ERU 140 mg	318	14.4 (SE 0.87)	MD 6.7 (95% Cl:4.4, 9.1), p<0.001
				Placebo	316	7.7 (SE 0.88)	NA
			MSQ	ERU 70 mg	104	NR	MD 3.8 (95% CI: -
			RFR	Placebo	151	NR	0.4, 8.0), p=0.08
		4	MSQ	ERU 70 mg	104	NR	MD 2.8 (95% CI: -
		4 weeks	RFP	Placebo	151	NR	1.0, 6.5), p=0.15
				ERU 70 mg	104	NR	MD 3.4 (95% CI: -
			MSQ EF	Placebo	151	NR	1.0, 7.7), p=0.13
Sun et al 2016 ³⁵	Low		MSQ	ERU 70 mg	104	NR	MD 3.9 (95% CI: -
2010			RFR	Placebo	151	NR	0.4, 8.1), p=0.076
		8 weeks	MSQ	ERU 70 mg	104	NR	MD 1.9 (95% CI: -
		o weeks	RFP	Placebo	151	NR	1.9, 5.6), p=0.33
				ERU 70 mg	104	NR	MD 3.0 (95% CI: -
			MSQ EF	Placebo	151	NR	1.3, 7.4), p=0.17
		12 weeks	MSQ	ERU 70 mg	104	NR	MD 1.8 (95% CI: -

Table A46 MSQ in patients receiving erenumab

Trial name	ROB	Timepoint of assessment	Outcome	Intervention and dose	n	Change from baseline	Difference between treatments
			RFR	Placebo	151	NR	2.5, 6.1), p=0.41
			MSQ	ERU 70 mg	104	NR	MD 0.5 (95% CI: -
			RFP	Placebo	151	NR	3.3, 4.3), p=0.79
			MSQ EF	ERU 70 mg	104	NR	MD 1.9 (95% CI: -
				Placebo	151	NR	2.6, 6.3), p=0.41
Chronic m	igraine	-					
				ERU 70 mg	188	17.7 (95% CI: 14.9, 20.6)	MD 6.0 (95% CI: 2.3, 9.6), p=0.002
			MSQ RFR	ERU 140 mg	187	19.1 (95% CI: 16.3, 22.0)	MD 7.4 (95% CI: 3.7, 11), p<0.001
				Placebo	281	11.8 (95% CI: 9.4, 14.1)	NA
				ERU 70 mg	188	13.0 (95% CI: 10.5, 15.6)	MD 4.1 (95% CI: 0.9, 7.4), p=0.013
Tepper et al 2017 ⁴⁴	Low	3 months	MSQ RFP	ERU 140 mg	187	13.8 (95% CI: 11.3, 16.4)	MD 4.9 (95% CI: 1.7, 8.2), p=0.003
				Placebo	281	8.9 (95% CI: 6.8, 11.0)	NA
				ERU 70 mg	188	18.2 (95% CI: 15.0, 21.3)	MD 8.3 (95% CI: 4.3, 12.4), p=0.013
			MSQ EF	ERU 140 mg	187	18.8 (95% CI: 15.6, 21.9)	MD 8.9 (95% CI: 4.9, 13), p<0.001
				Placebo	281	9.9 (95% CI: 7.3, 12.5)	NA

CI = confidence interval, **EF** = Emotional Function, **ERU** = erenumab, **n** = number of patients, **MD** = mean difference, **MSQ** = Migraine-Specific Quality of Life questionnaire, **NA** = not applicable, **NR** = not reported, **RFR** = Role Function Restrictive, **RFP** = Role Function Preventative, **RoB** = risk of bias, **SE** = standard error.

Trial name	ROB	Timepoint of assessment	Outcome	Intervention and dose	n	Change from baseline	Difference between treatments
Subgroups of	patients	with >2 prior tre	eatment failu	ires - episodic a	and chr	onic migraine	
				EPT 100 mg	271	25.0 (SE 1.8)	MD 11.3 (95% CI: 8.0, 14.7), p<0.0001
		Week 12	MSQ RFR	EPT 300 mg	284	28.7 (SE 1.7)	MD 15.0 (95% CI: 11.6, 18.3), p<0.0001
				Placebo	288	13.7 (SE 1.8)	NA
DELIVER 2022 ¹¹¹	Low		MSQ RFP	EPT 100 mg	271	22.7 (SE 1.6)	MD 11.1 (95% CI: 8.0, 14.3), p<0.0001
				EPT 300 mg	283	25.0 (SE 1.6)	MD 13.5 (95% CI: 10.4, 16.6), p<0.0001
				Placebo	288	11.6 (SE 1.6)	NA
			MSQ EF	EPT 100 mg	271	20.6 (SE 1.8)	MD 11.1 (95% CI: 7.5, 14.6), p<0.0001

MSQ in patients receiving eptinezumab

Trial name	ROB	Timepoint of assessment	Outcome	Intervention and dose	n	Change from baseline	Difference between treatments
				EPT 300 mg	283	23.1 (SE 1.8)	MD 13.5 (95% CI: 10.0, 17.0), p<0.0001
				Placebo	288	9.6 (SE 1.8)	NA
				EPT 100 mg	259	30.1 (SE 1.8)	MD 15.1 (95% CI: 11.7, 18.5), p<0.0001
			MSQ RFR	EPT 300 mg	275	30.0 (SE 1.7)	MD 15.0 (95% CI: 11.6, 18.4), p<0.0001
				Placebo	278	15.0 (SE 1.8)	NA
			MSQ RFP	EPT 100 mg	259	25.7 (SE 1.7)	MD 12.6 (95% CI: 9.4, 15.8), p<0.0001
		Week 24		EPT 300 mg	275	26.3 (SE 1.6)	MD 13.2 (95% CI: 10.1, 16.4), p<0.0001
				Placebo	278	13.1 (SE 1.6)	NA
				EPT 100 mg	259	24.1 (SE 1.9)	MD 14.1 (95% CI: 10.5, 17.7), p<0.0001
			MSQ EF	EPT 300 mg	275	24.1 (SE 1.8)	MD 14.1 (95% CI: 10.6, 17.7), p<0.0001
				Placebo	278	9.9 (SE 1.8)	NA

CI = confidence interval, **EF** = Emotional Function, **EPT** = eptinezumab, **n** = number of patients, **MD** = mean difference, **MSQ** = Migraine-Specific Quality of Life questionnaire, **NA** = not applicable, **NR** = not reported, **RFR** = Role Function Restrictive, **RFP** = Role Function Preventative, **RoB** = risk of bias, **SE** = standard error.

Trial name	ROB	Timepoint of assessment	Outcome	Intervention and dose	n	Change from baseline	Difference between treatments	
Chronic migra	ine							
				FRE 225 mg	375	19.4 (SE NR)	7.4 (SE 1.43), p<0.0001	
			MSQ RFR	FRE 675 mg	375	19.1 (SE NR)	7.1 (SE 1.35), p<0.0001	
				Placebo	371	12 (SE NR)	NA	
				FRE 225 mg	375	15.8 (SE NR)	6.3 (SE 1.15), p<0.0001	
		4 weeks	MSQ RFP	FRE 675 mg	375	15.3 (SE NR)	5.9 (SE 1.14), p<0.0001	
				Placebo	371	9.4 (SE NR)	NA	
			MSQ EF	FRE 225 mg	375	19.5 (SE NR)	7.4 (SE 1.54), p<0.0001	
				FRE 675 mg	375	19.1 (SE NR)	7.1 (SE 1.54), p<0.0001	
HALO CM ⁷⁹	Low			Placebo	371	12.1 (SE NR)	NA	
	Low			FRE 225 mg	375	21 (SE NR)	6.3 (SE 1.42), p<0.0001	
			MSQ RFR	FRE 675 mg	375	20.3 (SE NR)	5.6 (SE 1.42), p<0.0001	
				Placebo	371	14.7 (SE NR)	NA	
				FRE 225 mg	375	15.5 (SE NR)	3.9 (SE 1.26), p=0.0017	
		12 weeks	MSQ RFP	FRE 675 mg	375	15.9 (SE NR)	4.3 (SE 1.25), p=0.0007	
		-		Placebo	371	11.6 (SE NR)	NA	
				FRE 225 mg	375	20.3 (SE NR)	3.3 (SE 1.55), p=0.0348	
			MSQ EF	FRE 675 mg	375	20.9 (SE NR)	3.9 (SE 1.55), p=0.0126	
				Placebo	371	17 (SE NR)	NA	

Table A47 MSQ in patients receiving fremanezumab

Trial name	ROB	Timepoint of assessment	Outcome	Intervention and dose	n	Change from baseline	Difference between treatments			
Episodic and chronic migraine										
	Low	4 months		FRE quarterly	276	15.7 (SE 1.5)	8.8 (95% CI: 5.7, 11.9), p<0.0001			
FOCUS ^{85*}			MSQ total	FRE monthly	283	17.5 (SE 1.5)	10.6 (95% CI: 7.5, 13.7), p<0.0001			
				Placebo	278	6.9 (SE 1.5)	NA			

CI = confidence interval, **EF** = Emotional Function, **FRE** = fremanezumab, **n** = number of patients, **MD** = mean difference, **MSQ** = Migraine-Specific Quality of Life questionnaire, **NA** = not applicable, **NR** = not reported, **RFR** = Role Function Restrictive, **RFP** = Role Function Preventative, **RoB** = risk of bias, **SE** = standard error.

<u>Notes</u>

* In the FOCUS trial, there were three treatment groups; FRE quarterly, monthly and placebo. In the FRE quarterly group, patients received 675 mg FRE and 107 (39%) had episodic migraine, while 169 (61%) had chronic migraine. In the FRE monthly group 110 (39%) patients had episodic migraine and received 225 mg FRE monthly while 173 (61%) of patients had chronic migraine and received 675 mg FRE as a loading dose then 225 mg monthly. In the placebo group, 112 (40%) of patients had episodic migraine while 167 (60%) had chronic migraine.

Table A48 MSQ in patients receiving galcanezumab

	ROB	Timepoint of assessment	Outcome	Intervention and dose	n	Mean chance in MSQ	Difference between interventions
Episodic m	nigraine	•					
				GAL 120 mg	189	32.4 (SE 1.31)	MD 7.7 (95% CI: 5.2-10.3), p<0.001
EVOLVE- 1 ⁸⁹	Low	4–6 months	MSQ RFR	GAL 240 mg	184	32.1 (SE 1.32)	MD 7.4 (95% CI: 4.8-10.0), p<0.001
				Placebo	377	24.7 (SE 1.07)	NA
				GAL 120 mg	213	28.5 (SE 1.2), p<0.001	MD 8.80 (95% CI: 5.86, 11.74), p<0.00001
EVOLVE- 2 ⁹¹	Low	4–6 months	MSQ RFR	GAL 240 mg	210	27 (SE 1.2), p<0.001	MD 7.30 (95% CI: 4.36, 10.24), p<0.00001
				Placebo	396	19.7 (SE 0.9)	NA
				GAL 120 mg	112	16.6 (NR)	NR
		6 months	MSQ RFR	GAL 240 mg	112	16.3 (NR)	NR
				Placebo	228	9.7 (NR)	NR
Sakai et al 2020a ^{93,96}	Low			GAL 120 mg	115	17.13 (SE 1.03), p<0.001	MD 7.01 (95% CI: 4.55, 9.47), p<0.00001
,97		4–6 months	MSQ RFR	GAL 240 mg	114	15.91 (SE 1.03), p<0.001	MD 5.79 (95% CI: 3.33, 8.25), p<0.00001
				Placebo	230	10.12 (SE 0.72)	NA
			MSQ RFP	GAL 120 mg	112	9.64 (NR)	NR

	ROB	Timepoint of assessment	Outcome	Intervention and dose	n	Mean chance in MSQ	Difference between interventions
				GAL 240 mg	112	8.35 (NR)	NR
				Placebo	228	4.8 (NR)	NR
				GAL 120 mg	112	10.04 (NR)	NR
			MSQ EF	GAL 240 mg	112	7.73 (NR)	NR
				Placebo	228	3.46 (NR)	NR
				GAL 120 mg	112	13.46 (NR)	NR
			MSQ total	GAL 240 mg	112	11.98 (NR)	NR
				Placebo	228	7.14 (NR)	NR
				GAL 120 mg	60	19.8 (SE NR)	MD 6.3 (95%
			MSQ RFP	Placebo	127	13.4 (SE NR)	CI: 0.476,12.185), p=0.0342
				GAL 120 mg	60	31.9 (SE NR)	MD 9.6 (95%
Skljarevsk i et al Low 2018 ¹⁰¹	3 months	MSQ RFR	Placebo	127	22.4 (SE NR)	CI: 2.636, 16.518), p=0.0071	
			GAL 120 mg	60	26.6 (SE NR)	MD 9.7 (95%	
		MSQ EF	Placebo	127	16.9 (SE NR)	CI: 2.789, 16.674), p=0.0063	
				GAL 120 mg	60	27.4 (SE NR)	MD 8.7 (95% CI:
			MSQ total	Placebo	127	18.6 (SE NR)	2.450, 15.008), p=0.0067
			MSQ RFR	GAL 120 mg	260	21.01 (SE 0.85)	MD 7.07 (95% Cl: 5.20, 8.95), p<0.0001
				Placebo	258	13.94 (SE 0.88)	NA
			MSQ RFP	GAL 120 mg	260	18.79 (SE 0.87)	MD 6.03 (95% CI: 4.10, 7.95), p<0.0001
PERSIST	Law	Mantha 1.2		Placebo	258	12.76 (SE 0.90)	NA
2022 ¹¹²	Low	Months 1-3	MSQ EF	GAL 120 mg	260	17.88 (SE 0.98)	MD 4.16 (95% CI: 2.00, 6.32), p=0.0002
				Placebo	258	13.72 (SE 1.02)	NA
			MSQ total	GAL 120 mg	260	19.73 (SE 0.81)	MD 6.17 (95% CI: 4.39, 7.95), p<0.0001
				Placebo	258	13.56 (SE 0.84)	NA
Chronic mi	graine						
				GAL 120 mg	273	21.8 (SE 1.4)	MD 5.1 (95% CI: 2.1, 8.0), p<0.001
REGAIN ¹⁰	Low		MSQ RFR	GAL 240 mg	274	23.1 (SE 1.6)	MD 6.3 (95% Cl: 3.0, 9.6), p<0.001
				Placebo	538	16.8 (SE 1.2)	NA
			MSQ RFP	GAL 120 mg	273	18.0 (SE 1.4)	MD 7.0 (95% Cl: 4.2, 9.8),

	ROB	Timepoint of assessment	Outcome	Intervention and dose	n	Mean chance in MSQ	Difference between interventions	
							p<0.001	
				GAL 240 mg	274	16.1 (SE 1.4)	MD 5.1 (95% Cl: 2.3, 7.9), p<0.001	
				Placebo	538	11.0 (SE 1.2)	NA	
				GAL 120 mg	273	21.0 (SE 1.9)	MD 7.0 (95% Cl: 3.2, 10.8), p<0.001	
			MSQ EF	GAL 240 mg	274	20.7 (SE 1.9)	MD 6.6 (95% Cl: 2.8, 10.4), p<0.001	
				Placebo	538	14.1 (SE 1.6)	NA	
Chronic an	d episodic	migraine			1			
			MSQ	GAL 120 mg	130	31.6 (SE 1.2)	MD 1.9 (95%	
			RFR	GAL 240 mg	135	33.4 (SE 1.2)	CI: -1.3, 5.0)	
		12 months	MSQ RFP	GAL 120 mg	NR	NR	MD 1.3 (95%	
		12 11011015		GAL 240 mg	NR	NR	CI: -1.7, 4.2)	
			MSQ EF	GAL 120 mg	NR	NR	MD 3.1 (95%	
				GAL 240 mg	NR	NR	CI: -0.5, 6.6)	
CGAJ ¹⁰⁵		MSQ	GAL 120 mg	100	-7.1 (SE 1.8)	MD -2.4 (95%		
		RFR	GAL 240 mg	113	-9.5 (SE 1.7)	CI: -7.1, 2.3)		
		MSQ RFP	GAL 120 mg	100	-5.6 (SE 1.6)	MD -1.1 (95%		
113*	High	14 months**		GAL 240 mg	113	-6.7 (SE 1.5)	CI: -5.4, 3.2)	
			MSQ EF	GAL 120 mg	100	-9.1 (SE 2.0)	MD 1.4 (95% CI: -3.9, 6.6)	
				GAL 240 mg	113	-7.8 (SE 1.9)	013.9, 0.0)	
			MSQ	GAL 120 mg	99	-8.7 (SE 1.9)	MD -1.6 (95%	
			RFR	GAL 240 mg	115	-10.3 (SE 1.7)	CI: -6.5, 3.3)	
		16 months ¹³	MSQ RFP	GAL 120 mg	99	-6.6 (SE 1.7)	MD -1.6 (95%	
		10 monuns ¹⁰		GAL 240 mg	115	-8.2 (SE 1.6)	CI: -6.1, 2.9)	
			MSQ EF	GAL 120 mg	99	-8.4 (SE 2.2)	MD -1.5 (95%	
				GAL 240 mg	115	-9.9 (SE 2.0)	CI: -7.2, 4.2)	
Subgroups	of patients	with >2 prior trea	tment failure	s - episodic migra	ine			
		3 months,	MSQ	GAL 120 mg	137	23.4 (SE 1.8)	MD 11.5 (95%	
	Low	patients with 2 prior Tx failures	RFR	Placebo	132	11.9 (SE 1.8)	CI: 7.1, 15.9), p<0.0001	
			MSQ	GAL 120 mg	54	22.7 (SE 3.4)	MD 8.2 (SE	
CONQUE R ^{106,107}		3 months,	RFR	Placebo	43	14.5 (SE 3.6)	4.0), p=0.0426	
Γ'''	Low	patients with 3-	MSQ RFP	GAL 120 mg	54	19.2 (SE 3.0)	MD 8.3 (SE	
		4 prior Tx failures		Placebo	43	10.9 (SE 3.2)	3.6), p=0.0233	
		failures	MSQ EF	GAL 120 mg	54	24.2 (SE 4.0)	MD 9.5 (SE	
				Placebo	43	14.7 (SE 4.1)	4.7), p=0.0479	
Subgroups	- -	with >2 prior trea	tment failure		1			
CONQUE	Low	3 months,	MSQ	GAL 120 mg	95	20.6 (SE 2.1)	MD 13.9 (95%	

	ROB	Timepoint of assessment	Outcome	Intervention and dose	n	Mean chance in MSQ	Difference between interventions
R ^{106,107}		patients with 2 prior Tx failures	RFR	Placebo	98	6.7 (SE 2.0)	Cl: 8.9, 18.9), p<0.0001
			MSQ	GAL 120 mg	40	25.2 (SE 3.6)	MD 20.5 (SE
		3 months,	RFR	Placebo	41	4.7 (SE 3.4)	4.2), p<0.0001
	natients w	patients with 3–	MSQ RFP	GAL 120 mg	40	18.7 (SE 3.3)	MD 15.2 (SE
	Low	4 prior Tx		Placebo	41	3.5 (SE 3.1)	3.8), p=0.0001
		failures	100 55	GAL 120 mg	40	28.3 (SE 4.4)	MD 19.0 (SE
			MSQ EF	Placebo	41	9.2 (SE 4.0)	5.0), p=0.0003
				GAL 120 mg	64	19.13 (SE 2.87)	MD 8.45 (SE 2.99), p<0.01
REGAIN ¹⁰ ³	N ¹⁰ Low 3 months	3 months	MSQ RFR	GAL 240 mg	94	19.24 (SE 2.61)	MD 8.57 (SE 2.64), p<0.01
				Placebo	160	10.67 (SE 2.12)	NA

CI = confidence interval, EF = Emotional Function, GAL = galcanezumab, n = number of patients, MD = mean difference, MSQ = Migraine-Specific Quality of Life questionnaire, NA = not applicable, NR = not reported, RFR = Role Function Restrictive, RFP = Role Function Preventative, RoB = risk of bias, SE = standard error, Tx = treatment.

Notes

Blue text indicates RACS calculated comparisons.

* In the CGAJ trial there were two treatment groups; GAL 120 mg and GAL 240 mg. In the GAL 120 mg group 80.7% of patients had episodic migraine and 19.3% of patients had chronic migraine. In the 240 mg group, 77.0% of patients had episodic migraine and 23.0% of patients had chronic migraine. ** In the CGAJ trial, 12-month data was used as the baseline for the outcomes measured at 14 and 16 months.

HIT-6

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean change in HIT- 6	Difference between interventions
Episodic migr	aine	•				
ARISE ¹⁵	Low	3 months	ERU 70 mg	282	-4.9 (SE 0.4)	MD -2.3 (95% CI: -3.3, -1.3),
ANISE	LOW	5 11011015	Placebo	288	-2.6 (SE 0.4)	p<0.001
		1 month	ERU 70 mg	329	-5.33 (SE 0.39)	MD -1.90 (95% CI: -2.96, - 0.85), p<0.001
			ERU 140 mg	219	-6.10 (SE 0.47)	MD -2.67 (95% CI: -3.85, - 1.49), p<0.001
			Placebo	330	-3.43 (SE 0.39)	NA
			ERU 70 mg	329	-7.63 (SE 0.44)	MD -2.01 (95% CI: -3.20, - 0.83), p<0.001
EMPOwER ¹⁷	High	2 months	ERU 140 mg	219	-8.11 (SE 0.53)	MD -2.49 (95% CI: -3.81, - 1.17), p<0.001
			Placebo	330	-5.61 (SE 0.43)	NA
		3 months	ERU 70 mg	329	-8.39 (SE 0.45)	MD -1.77 (95% CI: -2.99, - 0.56), p=0.004
			ERU 140 mg	219	-9.34 (SE 0.54)	MD -2.71 (95% CI: -4.07, - 1.36), p<0.001
			Placebo	330	-6.62 (SE 0.44)	NA
		4 weeks	ERU 140 mg	119	-4.1 (SE NR)	MD -1.9 (95% CI: -3.1, -0.6),
		4 WEEKS	Placebo	124	-2.2 (SE NR)	p=0.003
		_ow 8 weeks	ERU 140 mg	119	-5.5 (SE NR)	MD -3.4 (95% CI: -4.8, -2.0),
LIBERTY ¹⁹	LOW		Placebo	124	-2.1 (SE NR)	p<0.001
		40	ERU 140 mg	119	-5.3 (SE NR)	MD -3.0 (95% CI: -4.5, -1.4),
		12 weeks	Placebo	124	-2.4 (SE NR)	p<0.001
			ERU 70 mg	135	-4.3 (95% CI: -5.2, - 3.4)	MD -2.1 (95% CI: -3.3, -0.9), p<0.001
Sakai et al 2019 ²³	Low	4–6 months	ERU 140 mg	136	-4.2 (95% CI: -5.1, - 3.3)	MD -2.0 (95% CI: -3.2, -0.8), p=0.001
			Placebo	136	-2.2 (95% CI: -3.1, - 1.3)	NA
			ERU 70 mg	312	-6.7 (SE 0.3)	MD -2.1 (95% CI: -3.0, -1.1), p<0.001
STRIVE ²⁸	Low	4–6 months	ERU 140 mg	318	-6.9 (SE 0.3)	MD -2.3 (95% CI: -3.2, -1.3), p<0.001
			Placebo	316	-4.6 (SE 0.4)	NA
		4 weeks	ERU 70 mg	104	NR	MD -1.2 (95% CI: -2.7, 0.4),
Current - I			Placebo	151	NR	p=0.13
Sun et al 2016 ³⁵	Low	8 weeks	ERU 70 mg	104	NR	MD -2.1 (95% CI: -3.6, -0.6),
			Placebo	151	NR	p=0.007
		12 weeks	ERU 70 mg	104	NR	MD -1.0 (95% CI: -2.5, 0.6),

Table A49 HIT-6 in patients receiving erenumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean change in HIT- 6	Difference between interventions			
			Placebo	151	NR	p=0.22			
Chronic migraine									
			ERU 70 mg	188	-5.6 (95% CI: -6.5, - 4.6)	MD -2.5 (95% CI: -3.7, -1.2), p<0.001			
Tepper et al 2017 ⁴⁴	Low	3 months	ERU 140 mg	187	-5.6 (95% CI: -6.5, - 4.6)	MD -2.5 (95% CI: -3.7, -1.2), p<0.001			
			Placebo	281	-3.1 (95% CI: -3.9, - 2.3)	NA			
Episodic and o	hronic i	migraine							
HER-MES ^{49*}	Low	4–6 months	ERU 70 or 140 mg	379	-10.9 (SE 0.4)	MD -3.2 (95% CI: -4.3, -2.1),			
			Topiramate 25–100 mg	377	-7.7 (SE 0.4)	p<0.001			

CI = confidence interval, ERU = erenumab, HIT-6 = Headache Impact Test-6, MD = mean difference, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SE = standard error.

<u>Notes</u>

* In HER-MES, the following number of patients were included: For Erenumab, 4–7 MMDs = 94 (24.2%), Episodic = 248 (63.9%), Chronic = 43 (11.1%). For topiramate, 4–7 MMDs = 92 (23.7%). Episodic (8–14 MMDs) = 254 (65.5%) Chronic (≥15 MMDs) = 42 (10.8%).

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean change in HIT- 6	Difference between interventions
Chronic mig	raine					
			EPT 300 mg	106	-10.0 (SD 8.4)	MD -4.20 (95% CI: -6.31, - 2.09), p<0.0001
Dodick et al 2019 ⁵⁷	Some concerns	3 months	EPT 100 mg	107	-6.9 (SD 7.4)	MD -1.10 (95% CI: -3.07, 0.87), p=0.27
			Placebo	110	-5.8 (SD 7.4)	NA
	Low	week 4	EPT 100 mg	356	-6.9 (NR)	MD -2.3 (95% CI: -3.4, - 1.2), p=NR
			EPT 300 mg	350	-8.6 (NR)	MD -4.0 (95% CI: -5.1, - 2.8), p=NR
PROMISE-			Placebo	366	-4.6 (NR)	NA
258		week 12	EPT 100 mg	356	-6.2 (Range: -34, 10)	MD -1.7 (95% CI: -2.8, - 0.7), p=0.001
			EPT 300 mg	350	-7.3 (Range: -40, 10)	MD -2.9 (95% CI: -3.9, - 1.8), p<0.0001
			Placebo	366	-4.5 (Range: -32, 15)	NA
Subgroups of	of patients w	vith >2 prior trea	atment failures	- episod	lic and chronic migraine	•
	Low	Week 4	EPT 100 mg	277	-6.7 (SE 0.6)	MD -4.9 (95% CI: -6.0, - 3.7), p<0.0001
DELIVER 2022 ^{110,111}			EPT 300 mg	283	-6.9 (SE 0.6)	MD -5.1 (95% CI: -6.2, - 3.9), p<0.0001
			Placebo	288	-1.8 (SE 0.6)	NA

Table A50 HIT-6 in patients receiving eptinezumab

Trial name	ROB	Timepoint of assessment	Intervention and dose	n	Mean change in HIT- 6	Difference between interventions
			EPT 100 mg	277	-6.9 (SE 0.6)	MD -3.8 (95% CI: -5.0, - 2.5), p<0.0001
		Week 12	EPT 300 mg	283	-8.5 (SE 0.6)	MD -5.4 (95% CI: -6.7, - 4.2), p<0.0001
			Placebo	288	-3.1 (SE 0.6)	NA
			EPT 100 mg	277	-8.9 (SE 0.6)	MD -5.0 (95% CI: -6.3, - 3.7), p<0.0001
		Week 24	EPT 300 mg	283	-9.9 (SE 0.6)	MD -6.0 (95% CI: -7.3, - 4.7), p<0.0001
			Placebo	288	-3.9 (SE 0.6)	NA

<u>Abbreviations</u> CI = confidence interval, EPT = eptinezumab, HIT-6 = Headache Impact Test-6, MD = mean difference, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SD = standard deviation.

Notes

Blue text indicates RACS calculated comparisons.

Table A51 HIT-6 in patients receiving fremanezumab

	ROB	Timepoint of assessment	Intervention and dose	n	Mean change in HIT-6	Difference between interventions
Chronic migraine)				•	
			FRE 225 mg	375	-6.8 (SE 0.4)	MD -2.4 (95% CI: -3.55, - 1.05), p=0.0003
HALO CM ⁷⁶	Low	12 weeks	FRE 675 mg	375	-6.4 (SE 0.5)	MD -1.9 (95% CI: -3.29, - 0.51), p=0.007
			Placebo	371	-4.5 (SE 0.5)	NA
			FRE 225 mg	182	-8.1 (SE 0.7)	MD -1.6 (95% CI: -2.94, - 0.19), p=0.026
Sakai et al 2021a ⁸³	Low	16 weeks	FRE 675 mg	180	-8.0 (SE 0.7)	MD -1.5 (95% CI: -2.91, - 0.15), p=0.030
			Placebo	179	-6.5 (SE 0.7)	NA
Episodic and chr	onic mig	graine				
		4 months	FRE quarterly	276	-5.2 (SE 0.6)	MD -3.0 (95% CI: -4.1, -1.8), p<0.0001
FOCUS ⁸⁵	Low		FRE monthly	283	-6.1 (SE 0.5)	MD -3.8 (95% CI: -5.0, -2.7), p<0.0001
			Placebo	278	-2.2 (SE 0.5)	NA
Subgroups of pat	tients wi	th >2 prior treat	tment failures -	episodic	and chronic migrain	ne
			FRE quarterly	140	-5.3 (0.78)	MD -2.5 (95% CI: -4.21, - 0.88), p=0.003
5001000		3 months 2 Tx failures	FRE monthly	133	-6.4 (0.78)	MD -3.6 (95% CI: -5.32, - 1.93), p<0.0001
FOCUS ⁸⁶	Low		Placebo	141	-2.7 (0.77)	NA
		3 months 3 Tx failures	FRE quarterly	85	-5.4 (0.96)	MD -2.8 (95% CI: -4.95, - 0.57), p=0.014
			FRE	98	-5.8 (0.94)	MD -3.2 (95% CI: -5.28, -

		monthly			1.11), p=0.003
		Placebo	82	-2.6 (0.90)	NA
	4 months 4 Tx failures	FRE quarterly	49	-5.0 (1.18)	MD -5.6 (95% CI: -8.16, - 3.03), p<0.001
		FRE monthly	50	-6.2 (1.04)	MD -6.8 (95% CI: -9.25, - 4.43), p<0.001
		Placebo	54	0.6 (1.19)	NA

CI = confidence interval, **FRE** = fremanezumab, **HIT-6** = Headache Impact Test-6, **MD** = mean difference, **n** = number of patients, **NA** = not applicable, **ROB** = risk of bias, **SD** = standard deviation.

Notes

Table A52 HIT-6 in patients receiving galcanezumab

	ROB	Timepoint of assessment	Intervention and dose	n	Mean change in HIT-6	Difference between interventions	
Episodic migraine	;						
Skljarevski et al	Low	2 manths	GAL 120 mg	60	-10.2 (SE NR)	MD -2.5 (95% CI: -5.107,	
2018101	Low	3 months	Placebo	127	-7.7 (SE NR)	0.144), p=0.0638	

CI = confidence interval, **GAL** = galcanezumab, **HIT-6** = Headache Impact Test-6, **MD** = mean difference, **n** = number of patients, **NA** = not applicable, **ROB** = risk of bias, **SE** = standard error.

MIDAS

Trial name	ROB	Timepoint of assessment	MIDAS type	Intervention and dose	n	Mean change in MIDAS	Difference between interventions
Episodic mig	raine						
ARISE ¹⁵	Low	3 months	mMIDAS	ERU 70 mg	282	-5.5 (SE 0.5)	MD -1.7 (95% CI: -
ANISE"	LOW	5 11011015	IIIIIIIDAS	Placebo	288	-3.8 (SE 0.5)	3.1, -0.3), p=0.021
				ERU 70 mg	329	-5.89 (SE 0.49)	-2.41 (95% CI: -3.75, -1.08), p=0.0005
		1 month		ERU 140 mg	219	-6.44 (SE 0.60)	-2.96 (95% CI: -4.46, -1.47), p=0.0001
				Placebo	330	-3.48 (SE 0.49)	NA
		High 2 months		ERU 70 mg	329	-7.51 (SE 0.48)	-2.48 (95% CI: -3.78, -1.18), p=0.0002
EMPOwER ¹⁷ High	High		mMIDAS	ERU 140 mg	219	-7.83 (SE 0.58)	-2.80 (95% CI: -4.24, -1.35), p=0.0002
				Placebo	330	-5.04 (SE 0.47)	NA
		3 months		ERU 70 mg	329	-8.11 (SE 0.43)	-1.52 (95% CI: -2.69, -0.35), p=0.011
				ERU 140 mg	219	-8.99 (SE 0.52)	-2.40 (95% CI: -3.70, -1.10), p=0.0004
				Placebo	330	-6.59 (SE 0.43)	NA
			mMIDAS	ERU 70 mg	312	-6.7 (SE 0.4)	-2.1 (95% Cl: -3.3, - 0.9), p<0.001
STRIVE ²⁸	Low	4–6 months		ERU 140 mg	318	-7.5 (SE 0.4)	-2.8 (95% CI: -4.0, - 1.7), p<0.001
				Placebo	316	'-4.6 (SE 0.4)	NA
Sun et al	Low	12 weeks	MIDAS	ERU 70 mg	93	NR	MD -5.3 (95% CI: -
201635	LOW		MIDAO	Placebo	134	NR	10.9, 0.3), p=0.064
Chronic migra	aine		1		r	1	1
				ERU 70 mg	188	-19.4 (95% CI: - 25.2, -13.6)	MD -11.9 (95% CI: - 19.3, -4.4), p=0.002
Tepper et al 2017 ⁴⁴	Low	3 months	MIDAS	ERU 140 mg	187	-19.8 (95% CI: - 25.6, -14.0)	MD -12.2 (95% CI: - 19.7, -4.8), p=0.001
				Placebo	281	-7.5 (95% CI: - 12.4, -2.7)	NA
	Some	Week 12	mMIDAS	ERU 70 mg	263	-14.67 (SE 1.20)	MD -1.74 (95% CI: - 5.06, 1.58), p=0.305
2022 ¹⁰⁹	concerns			Placebo	268	-12.93 (SE 1.19)	NA

Table A53 MIDAS in patients receiving erenumab

Abbreviations

CI = confidence interval, **ERU** = erenumab, **MD** = mean difference, **MIDAS** = Migraine Disability Assessment, **mMIDAS** = modified Migraine Disability Assessment, **n** = number of patients, **NA** = not applicable, **NR** = not reported, **ROB** = risk of bias, **SE** = standard error.

<u>Notes</u>

MIDAS in patients receiving eptinezumab

No studies identified.

	ROB	Timepoint of assessment	Intervention and dose	n	Mean change in MIDAS	Difference between interventions
Episodic migra	ine			-		
			FRE 225 mg	NR	NR	MD -14.50 (95% CI: - 26.79, -2.20), p=0.021
Bigal et al 2015b ⁶⁵	Low	9–12 weeks	FRE 675 mg	NR	NR	MD -15.20 (95% CI: - 27.62, -2.78), p=0.017
			Placebo	NR	NR	NA
			FRE 225 mg	287	-24.6 (95% Cl: -27.68, - 21.45)	MD -7.0 (95% CI: -10.51, -3.53), p<0.001
HALO EM ⁶⁸	High	12 weeks	FRE 675 mg	288	-23.0 (95% CI: -26.10, - 19.82)	MD -5.4 (95% CI: -8.90, - 1.93), p=0.002
			Placebo	290	-17.5 (95% Cl: -20.62, - 14.47)	NA
		16 weeks	FRE 225 mg	118	-12.6 (SE 1.4)	MD -5.2 (95% CI: -8.14, - 2.33), p<0.0001
Sakai et al 2021b ⁷¹	Low		FRE 675 mg	113	-12.6 (SE 1.5)	MD -5.1 (95% CI: -8.09, - 2.20), p<0.0001
			Placebo	112	-7.4 (SE 1.5)	NA
Episodic and c	hronic m	igraine				
		4 months	FRE quarterly	276	-19.7 (SE 3.3)	MD -12.7 (95% CI: -19.5, -6.0), p=0.0002
FOCUS ⁸⁵	Low		FRE monthly	283	-24.7 (SE 3.2)	MD -17.7 (95% Cl: -24.5, -11.0), p<0.0001
			Placebo	278	-7.0 (SE 3.2)	NA
Subgroups of p	oatients v	with >2 prior tre	atment failures	- episod	lic and chronic migraine	
			FRE quarterly	140	-14.7 (4.15)	MD -8.7 (95% CI: -17.47, 0.15), p=0.054
		4 months 2 Tx failures	FRE monthly	133	-21.5 (4.11)	MD -15.5 (95% CI: - 24.47, -6.46), p<0.001
			Placebo	141	-6.1 (4.10)	NA
			FRE quarterly	85	-18.9 (5.69)	MD -9.8 (95% CI: -22.68, 3.08), p=0.14
FOCUS ⁸⁶	Low	4 months 3 Tx failures	FRE monthly	98	-25.3 (5.56)	MD -16.2 (95% CI: - 28.51, -3.90), p=0.010
			Placebo	82	-9.1 (5.34)	NA
		4 months 4 Tx failures	FRE quarterly	49	-25.0 (10.43)	MD -31.7 (95% CI: - 54.07, -9.37), p=0.006
			FRE monthly	50	-23.2 (9.12)	MD -29.9 (95% CI: - 51.12, -8.70), p=0.006
			Placebo	54	6.7 (10.59)	NA

Abbreviations

CI = confidence interval, FRE = fremanezumab, MD = mean difference, MIDAS = Migraine Disability Assessment, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SE = standard error, Tx = treatment.

	ROB	Timepoint of assessment	Intervention and dose	n	Mean change in MIDAS	Difference between interventions	
Episodic migraine	1						
	1	2	GAL 120 mg	137	-19.0 (SE 3.6)	MD -16.4 (95% CI: -	
CONQUER ¹⁰⁶	Low	3 months	Placebo	132	-2.6 (SE 3.7)	24.9, -7.9), p=0.0002	
			GAL 120 mg	195	-21.16 (SE 1.65)	MD -6.29 (95% CI: - 9.45, -3.13), p<0.001	
EVOLVE-1 ⁸⁹	Low	6 months	GAL 240 mg	189	-20.06 (SE 1.68)	MD -5.19 (95% Cl: - 8.39, -1.98), p=0.002	
			Placebo	389	-14.87 (SE 1.37)	NA	
			GAL 120 mg	231	-21.2 (SE 1.6)	MD -9.20 (95% Cl: - 13.24, -5.16), p<0.0001	
EVOLVE-291	Low	6 months	GAL 240 mg	223	-20.2 (SE 1.6)	MD -8.20 (95% CI: - 12.24, -4.16), p<0.0001	
			Placebo	461	-12 (SE 1.3)	NA	
		6 months	GAL 120 mg	115	-7.06 (95% Cl: -9.67, - 4.44)	MD -4.90 (95% CI: - 8.04, -1.76), p=0.002	
Sakai et al 2020a ⁹³	Low		GAL 240 mg	114	-5.13 (95% Cl: -7.69, - 2.58)	MD -2.97 (95% CI: - 6.07, 0.13), p=0.06	
			Placebo	230	-2.16 (95% Cl: -3.96, - 0.36)	NR	
PERSIST 2022 ¹¹²	Low	3 months	GAL 120 mg	260	-22.61 (SE 2.96)	MD -12.43 (95% CI: -18.81, -6.05), p=0.0001	
			Placebo	258	-10.18 (SE 3.06)	NA	
Chronic migraine				1		-	
CONQUER ¹⁰⁶	Low	3 months	GAL 120 mg	95	-20.3 (SE 6.4)	MD -18.6 (95% Cl: - 33.4, -3.8),	
CONQUER	LOW	5 11011015	Placebo	98	-1.7 (SE 6.2)	p=0.0142	
			GAL 120 mg	273	-20.3 (SE 4.1)	MD -8.7 (95% CI: - 16.4, -1.1), p=0.025	
REGAIN ¹⁰²	Low	3 months	GAL 240 mg	274	-17.0 (SE 4.1)	MD -5.5 (95% CI: - 13.1, 2.1), p= 0.157	
			Placebo	538	-11.5 (SE 3.4)	NA	
Episodic and chron	ic migra	ine		1	1		
CGAJ ¹⁰⁵	High	12 months	GAL 120 mg	124	-33.6 (SE 2.1)	MD 0.9 (95% CI: -	
113	r iigir		GAL 240 mg	130	-32.7 (SE 2.0)	4.7, 6.5), p=0.76	
Subgroups of paties	nts with	>2 prior treatme	ent failures - ep	isodic m	igraine		

 Table A55
 MIDAS in patients receiving galcanezumab

	ROB	Timepoint of assessment	Intervention and dose	n	Mean change in MIDAS	Difference between interventions	
		2 months	GAL 120 mg	55	-18.2 (5.2)	MD 10.2 (95% CI: -	
CONQUER ¹⁰⁷	Low	3 months	Placebo	43	-8.0 (5.4)	- 12.32, -8.08), p<0.0001	
Subgroups of patier	nts with	>2 prior treatme	ent failures - ch	ronic mig	graine		
			GAL 120 mg	40	-31.0 (11.8)	MD -39.93 (95% CI:	
CONQUER ¹⁰⁷	Low	3 months	Placebo	42	8.9 (10.5)	-44.74, -35.06), p<0.0001	

<u>Abbreviations</u> CI = confidence interval, GAL = galcanezumab, MD = mean difference, MIDAS = Migraine Disability Assessment, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SE = standard error.

<u>Notes</u>

EQ-5D

Trial name	ROB	Timepoint of assessment	EQ-5D type	Intervention and dose	n	Mean change in EQ-5D	Difference between interventions			
Episodic mig	Episodic migraine									
				ERU 70 mg	329	4.98 (SE 0.75)	MD 3.01 (95% CI: 0.97, 5.04), p=0.004			
		1 month		ERU 140 mg	219	6.31 (SE 0.91)	MD 4.34 (95% CI: 2.06, 6.61), p<0.001			
			5L	Placebo	330	1.97 (SE 0.74)	NA			
EMPOwER				ERU 70 mg	329	6.32 (SE 0.74)	MD 2.43 (95% CI: 0.43, 4.44), p=0.018			
17	High	2 months		ERU 140 mg	219	7.55 (SE 0.89)	MD 3.66 (95% CI: 1.43, 5.89), p=0.001			
				Placebo	330	3.89 (SE 0.73)	NA			
				ERU 70 mg	329	7.08 (SE 0.79)	MD 1.86 (95% CI: -0.28, 4.00), p=0.088			
		3 months		ERU 140 mg	219	8.13 (SE 0.96)	MD 2.91 (95% CI: 0.52, 5.29), p=0.017			
				Placebo	330	5.22 (SE 0.78)	NA			

Table A56 EQ-5D in patients receiving erenumab

<u>Abbreviations</u> CI = confidence interval, ERU = erenumab, EQ-5D = EuroQol 5-dimension questionnaire; MD = mean difference, n = number of patients, NA = not applicable, ROB = risk of bias, SE = standard error.

Table A57	EQ-5D in patients receiving eptinezumab
-----------	---

Trial name	ROB	Timepoint of assessment	EQ-5D type	Intervention and dose	n	Mean change in EQ-5D	Difference between interventions
Subgroups of	f patient	s with >2 prior	treatment fa	ailures - episodi	c and cl	nronic migraine	
				EPT 100 mg	281	1.5 (SE 1.4)	MD 4.7 (95% CI: 1.9, 7.6), p≤0.05
		Week 4		EPT 300 mg	287	2.0 (SE 1.4)	MD 5.2 (95% CI: 2.4, 8.0), p≤0.05
			EQ-5D- 5L	Placebo	288	-3.2 (SE 1.4)	NA
				EPT 100 mg	281	2.0 (SE 1.4)	MD 5.1 (95% CI: 2.2, 8.1), p≤0.05
DELIVER 2022 ¹¹¹	Low			EPT 300 mg	287	4.4 (SE 1.4)	MD 7.5 (95% CI: 4.5, 10.4), p<0.0001
				Placebo	288	-3.1 (SE 1.4)	NA
				EPT 100 mg	281	2.0 (SE 1.4)	MD 4.7 (95% CI: 1.8, 7.7), p≤0.05
				EPT 300 mg	NR	5.2 (SE 1.4)	MD 8.0 (95% CI: 5.1, 10.8), p<0.0001
				Placebo	288	-2.8 (SE 1.4)	NA

CI = confidence interval, **EPT** = eptinezumab, **EQ-5D** = EuroQol 5-dimension questionnaire; **MD** = mean difference, **n** = number of patients, **NA** = not applicable, **ROB** = risk of bias, **SE** = standard error.

Trial name	ROB	Timepoint of assessment	EQ-5D type	Intervention and dose	n	Mean change in EQ-5D	Difference between interventions
Episodic and	chronic	migraine					
			FRE quarterly	276	4.7 (SE 1.4)	3.0 (95%Cl: 0.1, 5.9), p=0.0426	
FOCUS 85	Low	ow 4 months	EQ-5D	FRE monthly	283	7.2 (SE 1.4)	5.6 (95%Cl: 2.7, 8.5), p=0.0002
				Placebo	278	1.6 (SE 1.4)	NA
Chronic migra	aine						
		16 Weeks	-	FRE 225 mg	375	4.8 (SE NR)	2.6 (SE 1.18), p=0.0291
HALO CM ⁷⁹ L	Low		EQ- 5D-5L	FRE 675 mg	375	4.6 (SE NR)	2.4 (SE 1.18), p=0.0402
				Placebo	371	2.2 (SE NR)	NA

Table A58 EQ-5D in patients receiving fremanezumab

Abbreviations

CI = confidence interval, **EQ-5D** = EuroQol 5-dimension questionnaire; **FRE** = fremanezumab; **MD** = mean difference, **n** = number of patients, **NA** = not applicable, **ROB** = risk of bias, **SE** = standard error.

SF-36

Trial name	ROB	Timepoint of assessment	SF-36 domain	Intervention and dose	n	Mean change in SF-36	Difference between interventions
Episodic and	chronic	migraine					
			Physical component	ERU 70 or 140 mg	378	5.5 (SE 0.4)	1.9 (95% CI: 1.0, 2.8), p<0.001
	Low			Placebo	374	3.6 (SE 0.4)	NA
HER-MES ^{49*} Low	Low 4–6 months	Mental	ERU 70 or 140 mg	378	1.0 (SE 0.5)	2.2 (95% CI: 1.0, 3.3), p<0.001	
			component	Placebo	374	-1.2 (SE 0.5)	NA

Table A59 SF-36 in patients receiving erenumab

Abbreviations

CI = confidence interval, ERU = erenumab, MD = mean difference, n = number of patients, NA = not applicable, ROB = risk of bias, SE = standard error, SF-36 = 36-Item Short Form Health Survey.

<u>Notes</u>

* In HER-MES, the following number of patients were included: For Erenumab, 4-7 MMDs = 94 (24.2%), Episodic = 248 (63.9%), Chronic = 43 (11.1%). For topiramate, 4-7 MMDs = 92 (23.7%). Episodic (8-14 MMDs) = 254 (65.5%) Chronic ($\geq 15 \text{ MMDs}$) = 42 (10.8%).

Table A60 SF-36 in patients receiving eptinezumab

Trial name	ROB	Timepoint of assessment	SF-36 domain	Intervention and dose	n	Mean change in SF-36	Difference between interventions
Episodic and ch	ronic m	igraine					
			Physical component Mental component	EPT 100 mg	221	2.7 (SD 6.84)	NR
				EPT 300 mg	222	3.2 (SD 6.02)	NR
PROMISE-155	High	6 months		Placebo	222	1.3 (SD 6.42)	NA
56	підп	0 monuns		EPT 100 mg	221	0.5 (SD 8.89)	NR
				EPT 300 mg	222	1.4 (SD 7.86)	NR
				Placebo	222	0.6 (SD 7.63)	NA

Abbreviations

CI = confidence interval, EPT = eptinezumab, MD = mean difference, n = number of patients, NA = not applicable, NR = not reported, ROB = risk of bias, SE = standard error, SF-36 = 36-Item Short Form Health Survey.

Migraine pain intensity

	ROB	Timepoint of assessment	Intervention and dose	n	Mean change in migraine pain intensity*	Difference between interventions
Episodic mig	graine					
Sun et al	Low	12 weeks	ERU 70 mg	101	-0.1 (SE 0.04)	0.1 (95% CI: -0.04, 0.2),
2016 ³⁵	Low	IZ WEEKS	Placebo	153	-0.2 (SE 0.04)	p=0.2

Table A61 Migraine/headache pain intensity in patients receiving erenumab

Abbreviations

CI = confidence interval, ERU = erenumab, n = number of patients, ROB = risk of bias, SE = standard error. <u>Notes:</u>

Severity scale of migraine pain: 1 = Mild, 2 = Moderate, 3 = Severe.

Migraine/headache pain intensity in patients receiving eptinezumab

No studies identified.

Migraine/headache pain intensity in patients receiving fremanezumab

No studies identified.

Migraine/headache pain intensity in patients receiving galcanezumab

No studies identified.

Adverse events

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of adverse events	Difference between groups
Episodic migraine		L				
		0	ERU 70 mg	283	136 (48.1)	OR 0.77 (95% CI: 0.55, 1.07),
ARISE ¹⁶	Low	3 months	Placebo	289	158 (54.7)	p=0.11
			ERU 70 mg	335	117 (34.9)	OR 0.93 (95% CI: 0.67, 1.27), p=0.63
EMPOWER ¹⁷	High	6 months	ERU 140 mg	224	77 (34.4)	OR 0.90 (95% CI: 0.63, 1.29), p=0.57
			Placebo	335	123 (36.7)	NA
LIBERTY ¹⁸	Low	3 months	ERU 140 mg	119	65 (55)	OR 1.02 (95% CI: 0.62, 1.70),
LIDERTIN	LOW	5 11011115	Placebo	124	67 (54)	p=0.93
			ERU 70 mg	135	95 (70.4)	OR 1.14 (95% CI: 0.68, 1.90), p=0.63
Sakai et al 2019 ²³	Low	6 months	ERU 140 mg	137	95 (69.3)	OR 1.08 (95% CI: 0.65, 1.80), p=0.76
			Placebo	136	92 (67.6)	NA
	Low		ERU 70 mg	314	180 (57.3)	OR 0.79 (95% CI: 0.57, 1.08), p=0.14
STRIVE ²⁶		4–6 months	ERU 140 mg	319	177 (55.5)	OR 0.73 (95% CI: 0.53, 1.00), p=0.05
			Placebo	319	201 (63.0)	NA
Sun et al 2016 ³⁵	Low	3 months	ERU 70 mg	106	57 (54)	OR 1.01 (95% CI: 0.61, 1.66),
	LOW	0 1101113	Placebo	153	82 (54)	p=0.98
Chronic migraine					1	
			ERU 70 mg	190	83 (44)	OR 1.21 (95% CI: 0.83, 1.76), p=0.31
Tepper et al 2017 ⁴⁰	Low	3 months	ERU 140 mg	188	88 (47)	OR 1.38 (95% CI: 0.95, 2.00), p=0.09
			Placebo	282	110 (39)	NA
DRAGON 2022109	Some conce	Week 12	ERU 70 mg	279	127 (45.5)	OR 0.92 (95% CI: 0.66, 1.29), p=0.64
	rns		Placebo	278	132 (47.5)	NA
Subgroups of patier	nts with >	2 prior treatment	failures - episo	dic mig	raine	
			ERU 70 mg	92	39 (42.4)	OR 0.94 (95% CI: 0.55, 1.59), p=0.81
Tepper et al 201741	Low	3 months	ERU 140 mg	92	53 (57.6)	OR 1.73 (95% CI: 1.02, 2.94), p=0.04
			Placebo	141	62 (44.0)	NA
Subgroups of patier	1	-	[1	
STRIVE ²⁶	Low	6 months	ERU 70 mg	49	33 (67.3)	OR 0.87 (95% CI: 0.38, 2.00),

 Table A62
 Adverse events in patients receiving erenumab

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of adverse events	Difference between groups
						p=0.74
			ERU 140 mg	58	35 (60.3)	OR 0.64 (95% CI: 0.29, 1.41), p=0.27
			Placebo	54	38 (70.4)	NA

CI = confidence interval, ERU = erenumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

Adverse events in patients receiving eptinezumab

There were no studies reporting AEs among patients receiving eptinezumab.

Table A63 Adverse events in patients receiving fremanezumab

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of adverse events	Difference between groups
Episodic migraine						
			FRE 225 mg	290	192 (66.2)	OR 1.40 (95% CI: 1.0, 1.96), p=0.05
HALO EM ⁶⁸	High	3 months	FRE 675 mg	291	193 (66.3)	OR 1.41 (95% CI: 1.0, 1.97), p=0.05
			Placebo	293	171 (58.4)	NA
Chronic migraine						
	Low	3 months	FRE 225 mg	379	270 (71)	OR 1.39 (95% CI: 1.03, 1.89), p=0.03
HALO CM ⁷⁶			FRE 675 mg	376	265 (70)	OR 1.34 (95% CI: 0.99, 1.82), p=0.06
			Placebo	375	240 (64)	NA
Episodic and chroni	c migrair	ne				
	Low	3 months	FRE quarterly	276	151 (55)	OR 1.29 (95% CI: 0.92, 1.80), p=0.14
FOCUS ^{85*}			FRE monthly	285	129 (45)	OR 0.88 (95% CI: 0.63, 1.23), p=0.46
			Placebo	277	134 (48)	NA
Subgroups of patients with >2 prior treatment failures - Episodic and chronic migraine						
		3 months 2 Tx failures	FRE quarterly	140	67 (48)	OR 1.20 (95% CI: 0.75, 1.93), p=0.44
FOCUS ⁸⁶	Low		FRE monthly	134	58 (43)	OR 1.0 (95% CI: 0.62, 1.61), p=1.0
			Placebo	141	61 (43)	NA

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of adverse events	Difference between groups
		0	FRE quarterly	85	51 (60)	OR 1.62 (95% CI: 0.87, 2.99), p=0.13
		3 months 3 Tx failures 3 months 4 Tx failures	FRE monthly	99	47 (47)	OR 0.97 (95% CI: 0.54, 1.75), p=0.93
			Placebo	81	39 (48)	NA
			FRE quarterly	49	31 (63)	OR 1.01 (95% CI: 0.45, 2.26), p=0.97
			FRE monthly	50	23 (46)	OR 0.50 (95% CI: 0.23, 1.10), p=0.08
			Placebo	54	34 (63)	NA

CI = confidence interval, FRE = fremanezumab, n = number of patients, NA = not applicable, OR = odds ratio, RoB = risk of bias, Tx = treatment.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In the FOCUS trial, there were three treatment groups; FRE quarterly, monthly and placebo. In the FRE quarterly group, patients received 675 mg FRE and 107 (39%) had episodic migraine, while 169 (61%) had chronic migraine. In the FRE monthly group 110 (39%) patients had episodic migraine and received 225 mg FRE monthly while 173 (61%) of patients had chronic migraine and received 675 mg FRE as a loading dose then 225 mg monthly. In the placebo group, 112 (40%) of patients had episodic migraine while 167 (60%) had chronic migraine.

Table A64 Adverse events in patients receiving galcanezumab

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of adverse events	Difference between groups
Episodic migraine						
Dodick et al	Low	6 months	GAL 150 mg	107	77 (72)	OR 1.25 (95% CI: 0.70, 2.23),
2014a ⁸⁸	Low	6 months	Placebo	110	74 (67)	p=0.45

Abbreviations

CI = confidence interval, GAL = galcanezumab, n = number of patients, OR = odds ratio, RoB = risk of bias.

<u>Notes</u>

Treatment related adverse events

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of adverse events	Difference between groups		
Episodic migraine								
			ERU 70 mg	335	38 (11.3)	OR 1.21 (95% CI: 0.74. 1.99), p=0.45		
EMPOwER ¹⁷	High	6 months	ERU 140 mg	224	24 (10.7)	OR 1.14 (95% CI: 0.65, 1.99), p=0.65		
			Placebo	335	32 (9.6)	NA		
Chronic migraine				-				
DRAGON 2022109	Some concerns	Week 12	ERU 70 mg	279	36 (12.9)	OR 0.96 (95% CI: 0.59, 1.58), p=0.88		
			Placebo	278	37 (13.3)	NA		
Episodic and chron	Episodic and chronic migraine							
		24 weeks	ERU 70 or 140 mg	388	215 (55.4)	OR 0.29 (95% CI: 0.21,		
HER-MES ^{49*}	Low		Topiramate 25–100 mg	388	315 (81.2)	0.40), p<0.00001		

Table A65 Treatment related adverse events (TRAE) in patients receiving erenumab

Abbreviations

CI = confidence interval, ERU = erenumab, n = number of patients, OR = Odds ratio, NA = not applicable, RoB = risk of bias.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In HER-MES, the following number of patients were included: For erenumab, 4–7 MMDs = 94 (24.2%), Episodic = 248 (63.9%), Chronic = 43 (11.1%). For topiramate, 4–7 MMDs = 92 (23.7%). Episodic (8–14 MMDs) = 254 (65.5%). Chronic (≥15 MMDs) = 42 (10.8%).

Table A66	Treatment related adverse events (TRAE) in patients receiving eptinezumab
-----------	---

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of adverse events	Difference between groups
Subgroups of patients with >2 prior treatment failures - episodic and chronic migraine						
			EPT 100 mg	299	127 (42)	OR 1.11 (95% CI: 0.8, 1.54), p=0.53
DELIVER 2022 ¹¹⁰	Low	Week 24	EPT 300 mg	294	120 (41)	OR 1.04 (95% CI 0.75, 1.44), p=0.83
			Placebo	298	119 (40)	NA

Abbreviations

EPT = eptinezumab, **n** = number of patients, **OR** = Odds ratio, **NA** = not applicable, **RoB** = risk of bias.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

Table A67 Treatment related adverse events (TRAE) in patients receiving fremanezumab

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of adverse events	Difference between groups			
Episodic migraine									
			FRE 225 mg	96	26 (27)	OR 1.24 (95% CI: 0.65, 2.35), p=0.51			
Bigal et al 2015b ⁶⁵	Low	3 months	FRE 675 mg	96	24 (25)	OR 1.11 (95% CI: 0.58, 2.13), p=0.75			
			Placebo	104	24 (23)	NA			
	High	High 3 months	FRE 225 mg	290	138 (47.6)	OR 1.53 (95% CI: 1.10, 2.13), p=0.01			
HALO EM ⁶⁸			FRE 675 mg	291	137 (47.1)	OR 1.50 (95% CI: 1.08, 2.09), p=0.02			
			Placebo	293	109 (37.2)	NA			
Chronic migraine									
Bigal et al 2015a ⁷³	Low	3 months	FRE 675/225 mg*	88	25 (29)	OR 1.96 (95% CI: 0.95, 4.03), p=0.07			
		3 months	Placebo	89	15 (17)				
Episodic and chro	nic migra	aine							
FOCUS ^{85**}	Low	3 months	FRE quarterly	276	57 (21)	OR 1.05 (95% CI: 0.69, 1.59), p=0.82			
		3 months	FRE monthly	285	55 (19)	OR 0.97 (95% CI: 0.64, 1.46), p=0.87			
		3 months	Placebo	277	55 (20)	NA			

CI = confidence interval, FRE = fremanezumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In Bigal et al 2015a patients received 675 mg in the first treatment cycle and 225 mg in the second and third treatment cycles. ** In the FOCUS trial, there were three treatment groups; FRE quarterly, monthly and placebo. In the FRE quarterly group, patients received 675 mg FRE and 107 (39%) had episodic migraine, while 169 (61%) had chronic migraine. In the FRE monthly group 110 (39%) patients had episodic migraine and received 225 mg FRE monthly while 173 (61%) of patients had chronic migraine and received 675 mg FRE as a loading dose then 225 mg monthly. In the placebo group, 112 (40%) of patients had episodic migraine while 167 (60%) had chronic migraine.

Table A68	Treatment related adverse eve	nts (TRAE) in patients receiving galcanezumab
-----------	-------------------------------	---

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of adverse events	Difference between groups	
Episodic migraine							
EVOLVE-1 ⁸⁹ L	Low	6 months	GAL 120 mg	206	135 (65.5)	OR 1.25 (95% CI: 0.88, 1.76), p=0.21	
			GAL 240 mg	220	149 (67.7)	OR 1.37 (95% CI: 0.98, 1.94), p=0.07	
			Placebo	432	261 (60.4)	NA	
PERSIST 2022 ¹¹²	Low 3	3 months	GAL 120 mg	261	130 (49.8)	OR 1.3 (95% CI: 0.92, 1.84), p=0.13	
			Placebo	259	112 (43.2)	NA	

CI = confidence interval, GAL = galcanezumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

Serious adverse events

Timepoint of Interventio Number (%) Study name ROB n Difference between groups n and dose of SAEs assessmen t **Episodic migraine** ERU 70 mg 283 3 (1.1) OR 0.61 (95% CI: 0.14, 2.57), ARISE¹⁵ 3 months Low p=0.50 Placebo 289 5 (1.7) OR 1.50 (95% CI: 0.25, 9.06), ERU 70 mg 335 3 (0.9) p=0.66 ERU 140 EMPOwER¹⁷ High 6 months OR 0.30 (95% CI: 0.01, 6.22), 224 0(0) p=0.43 mg Placebo 2 (0.6) NA 335 ERU 140 2 (2) 119 OR 2.10 (95% CI: 0.19, 23.50), LIBERTY¹⁸ 3 months mg Low p=0.55 Placebo 124 1 (1) OR 0.25 (95% CI: 0.03, 2.23), ERU 70 mg 135 1 (0.7) p=0.21 Sakai et al 6 months ERU 140 OR 0.24 (95% CI: 0.03, 2.20), Low 201923 137 1 (0.7) p=0.21 mg Placebo 136 4 (2.9) NA OR 1.17 (95% CI: 0.42, 3.25), ERU 70 mg 314 8 (2.5) p=0.77 STRIVE²⁶ ERU 140 OR 0.85 (95% CI: 0.28, 2.57), Low 4-6 months 319 6 (1.9) p=0.78 mg 319 7 (2.2) NA Placebo ERU 70 mg 106 1 (1) Sun et al OR 4.36 (95% CI: 0.18, 3 months Low 201635 108.18), p=0.37 Placebo 153 0 (0) **Chronic migraine** OR 1.28 (95% CI: 0.42, 3.87), ERU 70 mg 190 6 (3) p=0.66 Tepper et al 3 months ERU 140 OR 0.42 (95% CI: 0.09, 2.06), Low 201740 188 2 (1) p=0.29 mg Placebo 282 7 (2) NA OR 1.00 (95% CI: 0.34, 2.88), 279 7 (2.5) Some ERU 70 mg DRAGON p=0.99 Week 12 concern 2022109 s Placebo 278 7 (2.5) NA Episodic and chronic migraine

Table A69 Serious adverse events (SAE) in patients receiving erenumab

Low

Takeshima et

6 months

ERU 70 mg

130

2 (1.5)

OR 1.01 (95% CI: 0.14, 7.26),

Study name	ROB	Timepoint of assessmen t	Interventio n and dose	n	Number (%) of SAEs	Difference between groups			
al 2021 ^{51*}			Placebo	131	2 (1.5)	p=0.99			
	Low	24 weeks	ERU 70 or 140 mg	388	10 (2.58)	OR 0.51 (95% CI: 0.24, 1.12),			
HER-MES ^{50**}	Low	24 weeks	Topiramate 25–100 mg	388	19 (4.90)	p=0.09			
Subgroups of p	Subgroups of patients with >2 prior treatment failures - episodic migraine								
Tepper et al 2017 ⁴¹	Low	3 months	ERU 70 mg	92	3 (3.3)	OR 1.15 (95% CI: 0.25, 5.28), p=0.85			
			ERU 140 mg	92	1 (1.1)	OR 0.38 (95% CI: 0.04, 3.42), p=0.39			
			Placebo	141	4 (2.8)	NA			
Subgroups of p	atients with	>2 prior treatm	ent failures - cl	hronic r	nigraine				
			ERU 70 mg	49	2 (4.1)	OR 5.74 (95% CI: 0.27, 122.50), p=0.26			
STRIVE ³⁰	Low	6 months	ERU 140 mg	58	3 (5.2)	OR 6.87 (95% CI: 0.35, 136.24), p=0.21			
			Placebo	54	0 (0.0)	NA			

CI = confidence interval, ERU = erenumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias, SAEs = serious adverse events.

Notes

Blue text indicates RACS calculated comparisons.

* Takeshima et al 2021 did not report the number of patients who had chronic or episodic migraine.

** In HER-MES, the following number of patients were included: For erenumab, 4-7 MMDs = 94 (24.2%), Episodic = 248 (63.9%), Chronic = 43 (11.1%). For topiramate, 4-7 MMDs = 92 (23.7%). Episodic (8–14 MMDs) = 254 (65.5%). Chronic (\geq 15 MMDs) = 42 (10.8%).

Table A70	Serious adverse events (SAE) in patients	receiving eptinezumab
-----------	--------------------------	------------------	-----------------------

Study name	ROB	Timepoint of assessment	Interventio n and dose	n	Number (%) of SAEs	Difference between groups				
Episodic migra	Episodic migraine									
		56 weeks	EPT 100 mg	223	4 (1.79)	OR 0.66 (95% CI: 0.18, 2.36), p=0.52				
PROMISE-1 ⁵⁶	High		EPT 300 mg	224	3 (1.34)	OR 0.49 (95% CI: 0.12, 1.98), p=0.32				
			Placebo	222	6 (2.7)	NA				
Chronic migra	ine									
	Some conce rns	3 months	EPT 300 mg	121	7 (5.8)	OR 7.37 (95% CI: 0.89, 60.83), p=0.06				
Dodick et al 2019 ⁵⁷			EPT 100 mg	122	4 (3.3)	OR 4.07 (95% CI: 0.45, 36.93), p=0.21				
			Placebo	121	1 (0.8)	NA				
PROMISE-264	Low	1–32 weeks	EPT 100 mg	356	3 (0.84)	OR 1.03 (95% CI: 0.21, 5.13), p=0.97				

Study name	ROB	Timepoint of assessment	Interventio n and dose	n	Number (%) of SAEs	Difference between groups
			EPT 300 mg	350	4 (1.14)	OR 1.40 (95% CI: 0.31, 6.30), p=0.66
			Placebo	366	3 (0.82)	NA
Subgroups of	patients v	vith >2 prior trea	tment failures	- episod	lic and chronic	; migraine
			EPT 100 mg	299	5 (2)	OR 1.25 (95% CI: 0.33, 4.7), p=0.74
DELIVER 2022 ¹¹⁰	Low	Week 24	EPT 300 mg	294	7 (2)	OR 1.79 (95% CI: 0.52, 6.19), p=0.35
			Placebo	298	4 (1)	NA

<u>Abbreviations</u> CI = confidence interval, EPT = eptinezumab, n = number of patients, NA = not applicable, OR = odds ratio, RoB = risk of bias, **SAEs** = serious adverse events.

Notes

Blue text indicates RACS calculated comparisons.

Table A71 Serious adverse events (SAE) in patients receiving fremanezum

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of SAEs	Difference between groups				
Episodic migra	Episodic migraine									
			FRE 225 mg	96	2 (2)	OR 5.53 (95% CI: 0.26, 116.64), p=0.27				
Bigal et al 2015b ⁶⁵	Low	3 months	FRE 675 mg	96	2 (2)	OR 5.53 (95% CI: 0.26, 116.64), p=0.27				
			Placebo	104	0 (0)	NA				
			FRE 225 mg	290	3 (1.0)	OR 0.43 (95% CI: 0.11, 1.67), p=0.22				
HALO EM ⁶⁸	High	3 months	FRE 675 mg	291	3 (1.0)	OR 0.43 (95% CI: 0.11, 1.66), p=0.22				
			Placebo	293	7 (2.4)	NA				
		w 3 months	FRE 225 mg	121	0 (0)	Not estimable				
Sakai et al 2021b ⁷¹	Low		FRE 675 mg	118	0 (0)	Not estimable				
			Placebo	117	0 (0)	NA				
Chronic migra	ine									
Bigal et al 2015a ⁷³	Low	3 months	FRE 675/225 mg	88	1 (1)	OR 1.01 (95ICI: 0.06, 16.43),				
20108/0			Placebo	89	1 (1)	p=0.99				
			FRE 225 mg	379	5 (1)	OR 0.82 (95% CI: 0.25, 2.72), p=0.75				
HALO CM ⁷⁶	Low	3 months	FRE 675 mg	376	3 (<1)	OR 0.49 (95% CI: 0.12, 1.99), p=0.32				
			Placebo	375	6 (2)	NA				
Sakai et al 2021a ⁸³	Low	3 months	FRE 225 mg	188	3 (1.6)	OR 3.08 (95% CI: 0.32, 29.89), p=0.33				

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of SAEs	Difference between groups			
			FRE 675 mg	190	1 (0.5)	OR 1.01 (95% CI: 0.06, 16.19), p=1.00			
			Placebo	191	1 (0.5)	NA			
Episodic and chronic migraine									
			FRE quarterly	276	2 (<1)	OR 0.50 (95% CI: 0.09, 2.74), p=0.42			
FOCUS ^{85*}	Low	3 months	FRE monthly	285	4 (1)	OR 0.97 (95% CI: 0.24, 3.92), p=0.97			
			Placebo	277	4 (1)	NA			
Subgroups of	patients v	with >2 prior trea	tment failures - E	Episodi	c and chroni	c migraine			
		3 months 2 Tx failures	FRE quarterly	140	1 (<1)	OR 0.25 (95% CI: 0.03, 2.23), p=0.21			
			FRE monthly	134	2 (1)	OR 0.52 (95% CI: 0.09, 2.88), p=0.45			
			Placebo	141	4 (3)	NA			
			FRE quarterly	85	0	Not estimable			
FOCUS ⁸⁶	Low	3 months 3 Tx failures	FRE monthly	99	2 (2)	OR 4.18 (95% CI: 0.20, 88.30), p=0.36			
			Placebo	81	0	NA			
		3 months 4 Tx failures	FRE quarterly	49	1 (2)	OR 3.37 (95% CI: 0.13, 84.70), p=0.46			
			FRE monthly	50	0	Not estimable			
			Placebo	54	0	NA			

CI = confidence interval, **FRE** = fremanezumab, **n** = number of patients, **OR** = odds ratio, **NA** = not applicable, **RoB** = risk of bias, **SAEs** = serious adverse events, **Tx** = treatment.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In the FOCUS trial, there were three treatment groups; FRE quarterly, monthly and placebo. In the FRE quarterly group, patients received 675 mg FRE and 107 (39%) had episodic migraine, while 169 (61%) had chronic migraine. In the FRE monthly group 110 (39%) patients had episodic migraine and received 225 mg FRE monthly while 173 (61%) of patients had chronic migraine and received 675 mg FRE as a loading dose then 225 mg monthly. In the placebo group, 112 (40%) of patients had episodic migraine while 167 (60%) had chronic migraine.

	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of SAEs	Difference between groups			
Episodic migra	Episodic migraine								
Dodick et al	Low	6 months	GAL 150 mg	107	2 (1.9)	OR 0.50 (95% CI: 0.09, 2.82),			
2014a ⁸⁸			Placebo	110	4 (3.6)	p=0.44			
EVOLVE-189 Lo	L ou r	6 months	GAL 120 mg	206	6 (2.9)	OR 2.56 (95% CI: 0.77, 8.49), p=0.12			
	Low		GAL 240 mg	220	0 (0)	OR 0.18 (95% CI: 0.01, 3.20), p=0.24			

	ROB	Timepoint of assessment	Intervention and dose	n	Number (%) of SAEs	Difference between groups
			Placebo	432	5 (1.2)	NA
			GAL 120 mg	226	5 (2.2)	OR 2.06 (95% CI: 0.59, 7.20), p=0.26)
EVOLVE-291	Low	6 months	GAL 240 mg	228	7 (3.1)	OR 2.89 (95% CI: 0.91, 9.20), p=0.07
			Placebo	461	5 (1.1)	NA
			GAL 120 mg	115	3 (2.6)	OR 14.34 (95% CI: 0.73, 280.05), p=0.08
Sakai et al 2020a ⁹³	Low	6 months	GAL 240 mg	114	1 (0.9)	OR 6.09 (95% CI: 0.25, 150.74), p=0.27
			Placebo	230	0 (0.0)	NA
		1–12 weeks	GAL 120 mg	70	1 (1.43)	OR 5.94 (95% CI: 0.24, 147.6),
Skljarevski et	Low		Placebo	137	0 (0)	p=0.28
al 2018 ^{98,100}	LOW	12–24 weeks	GAL 120 mg	63	0 (0)	Not estimable
			Placebo	125	0 (0)	NA
PERSIST 2022 ¹¹²	Low	3 months	GAL 120 mg	261	2 (0.77)	OR 0.49 (95% CI: 0.09, 2.71), p=0.42
2022112			Placebo	259	4 (1.54)	NA
Chronic migra	ine					
			GAL 120 mg	273	1 (<1)	OR 0.51 (95% CI: 0.06, 4.58), p=0.55
REGAIN ¹⁰²	Low	3 months	GAL 240 mg	282	5 (1.77)	OR 2.50 (95% CI: 0.67, 9.38), p=0.17
			Placebo	558	4 (<1)	NA
Episodic and o	chronic m	igraine				
CGAJ ^{105*}	High	12 months	GAL 120 mg	129	3 (2.3)	OR 0.46 (95% CI: 0.12, 1.80),
	riigii		GAL 240 mg	141	7 (5.0)	p=0.26
CONQUER ¹⁰⁶	Low	3 months	GAL 120 mg	232	2 (1)	OR 0.99 (95% CI: 0.14, 7.10),
**	LOW	3 months	Placebo	230	2 (1)	p=0.99

CI = confidence interval, GAL = galcanezumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias, SAEs = serious adverse events.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In the CGAJ trial there were two treatment groups; GAL 120 mg and GAL 240 mg. In the GAL 120 mg group 80.7% of patients had episodic migraine and 19.3% of patients had chronic migraine. In the 240 mg group, 77.0% of patients had episodic migraine and 23.0% of patients had chronic migraine.

** In the CONQUER trial there were two treatment groups, GAL 120 mg and Placebo. In the GAL 120 mg group 59% of patients had episodic migraine and 41% of patients had chronic migraine. In the placebo group, 58% of patients had episodic migraine and 43% of patients had chronic migraine.

Adverse events leading to discontinuation

Study name	ROB	Timepoint of assessmen t	Interventio n and dose	n	Numbers discontinue d (%)	Difference between groups
Episodic migr	aine		L	1	L	
ARISE ¹⁵	Low	3 months	ERU 70 mg	28 3	5 (1.8)	OR 5.18 (95% CI: 0.60, 44.62),
ANGL	LOW	5 1101015	Placebo	28 9	1 (0.3)	p=0.13
			ERU 70 mg	33 5	0 (0)	OR 0.20 (95% CI: 0.01, 4.16), p=0.30
EMPOwER ¹⁷	High	6 months	ERU 140 mg	22 4	0 (0)	OR 0.30 (95% CI: 0.01, 6.22), p=0.43
			Placebo	33 5	2 (0.6)	NA
LIBERTY ¹⁸	Low	3 months	ERU 140 mg	11 9	0	OR 0.34 (95% CI: 0.01, 68.54),
	LOW	3 months	Placebo	12 4	1 (1)	p=0.52
		w 6 months	ERU 70 mg	13 5	2 (1.5)	OR 2.03 (95% CI: 0.18, 22.66), p=0.57
Sakai et al 2019 ²³	Low		ERU 140 mg	13 7	0 (0.0)	OR 0.33 (95% CI: 0.01, 8.13), p=0.50
			Placebo	13 6	1 (0.7)	NA
			ERU 70 mg	31 4	7 (2.2)	OR 0.89 (95% CI: 0.32, 2.47), p=0.82
STRIVE ²⁶	Low	4–6 months	ERU 140 mg	31 9	7 (2.2)	OR 0.87 (95% CI: 0.31, 2.43), p=0.79
			Placebo	31 9	8 (2.5)	NA
Sun et al	Low	3 months	ERU 70 mg	10 6	3 (3)	OR 2.20 (95% CI: 0.36, 13.39),
2016 ³⁵	LOW	5 11011115	Placebo	15 3	2 (1)	p=0.39
Chronic migra	ine					
			ERU 70 mg	19 0	0 (0)	OR 0.29 (95% CI: 0.01, 6.17), p=0.43
Tepper et al 2017 ⁴⁰	Low	3 months	ERU 140 mg	18 8	2 (1)	OR 1.51 (95% CI: 0.21, 10.78), p=0.68
			Placebo	28 2	2 (<1)	NA
DRAGON	Some concern	Week 12	ERU 70 mg	27 9	2 (0.7)	OR 1.00 (95% CI: 0.14, 7.12), p=0.99
2022 ¹⁰⁹	S	Week 12	Placebo	27 8	2 (0.7)	NA

 Table A73
 Adverse events leading to discontinuation, erenumab

Study name	ROB	Timepoint of assessmen t	Interventio n and dose	n	Numbers discontinue d (%)	Difference between groups				
Episodic and o	Episodic and chronic migraine									
HER-MES ^{49*}	Low	24 weeks	ERU 70 or 140 mg	38 8	41 (10.6)	OR 0.19 (95% CI: 0.13, 0.27) RR 0.27 (95% CI: 0.20, 0.37),				
HER-MES*	LOW	24 WEEKS	Topiramate 25–100 mg	38 8	151 (38.9)	p<0.001				
Takeshima et		Low 6 months	ERU 70 mg	13 0	0 (0)	Not estimable				
al 2021 ^{51**}	LOW		Placebo	13 1	0 (0)	Not estimable				
Subgroups of	patients wit	th >2 prior treat	ment failures -	episod	lic migraine					
STRIVE ³⁰	Low	6 months	ERU 70 mg	49	1 (2.0)	OR 3.37 (95% CI: 0.13, 84.70), p=0.46				
			ERU 140 mg	58	4 (6.9)	OR 9.00 (95% CI: 0.47, 171.23), p=0.14				
			Placebo	54	0 (0)	NA				
Subgroups of	patients wit	th >2 prior treat	ment failures -	chroni	c migraine					
			ERU 70 mg	92	0 (0.0)	OR 0.51 (95% CI: 0.02, 12.56), p=0.68				
Tepper et al 2017 ⁴¹	Low	3 months	ERU 140 mg	92	0 (0.0)	OR 0.51 (95% CI: 0.02, 12.56), p=0.68				
			Placebo	14 1	1 (0.7)	NA				

CI = confidence interval, ERU = erenumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias.

Notes

Blue text indicates RACS calculated comparisons.

* In HER-MES, the following number of patients were included: For Erenumab, 4–7 MMDs = 94 (24.2%), Episodic = 248 (63.9%), Chronic

= 43 (11.1%). For topiramate, 4–7 MMDs = 92 (23.7%). Episodic (8–14 MMDs) = 254 (65.5%). Chronic (\geq 15 MMDs) = 42 (10.8%). ** Takeshima et al 2021 did not report the number of patients who had chronic or episodic migraine.

Table A74 Adverse events leading to discontinuation, eptinezumab

Study name	ROB	Timepoint of assessmen t	Intervention and dose	n	Number discontinue d (%)	Difference between groups
Episodic migra	aine					
			EPT 100 mg	223	6 (2.7)	OR 1.00 (95% CI: 0.32, 3.13), p=0.99
PROMISE-154	High	3 months	EPT 300 mg	224	5 (2.2)	OR 0.82 (95% CI: 0.25, 2.73), p=0.75
			Placebo	222	6 (2.7)	NA
Chronic migrai	ine					
PROMISE-258	Low	1–12 weeks	EPT 100 mg	356	3 (<1)	OR 1.55 (95% CI: 0.26, 9.31), p=0.63

Study name	ROB	Timepoint of assessmen t	Intervention and dose	n	Number discontinue d (%)	Difference between groups
			EPT 300 mg	350	8 (2.3)	OR 4.26 (95% CI: 0.90, 20.19), p=0.07
			Placebo	366	2 (<1)	NA
Subgroups of	patients wi	th >2 prior treat	tment failures - e	pisodio	and chronic mi	graine
			EPT 100 mg	299	1 (<1)	OR 1.00 (95% CI: 0.06, 16.01), p=0.99
DELIVER 2022 ¹¹⁰	Low	Week 24	EPT 300 mg	294	6 (2)	OR 6.19 (95% Cl: 0.74, 51.71), p=0.09
			Placebo	298	1 (<1)	NA

CI = confidence interval, **EPT** = eptinezumab, **n** = number of patients, **OR** = odds ratio, **NA** = not applicable, **RoB** = risk of bias.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number discontinued (%)	Difference between groups
Episodic migr	aine			_		
			FRE 225 mg	290	5 (1.7)	OR 0.40 (95% CI: 0.08, 2.08), p=0.28
HALO EM ⁶⁸	High	12 weeks	FRE 675 mg	291	5 (1.7)	OR 1.01 (95% CI: 0.29, 3.52), p=0.99
			Placebo	293	5 (1.7)	NA
			FRE 225 mg	121	1 (0.8)	OR 0.97 (95% CI: 0.06, 15.64), p=0.98
Sakai et al 2021b ⁷¹	Low	12 weeks	FRE 675 mg	118	0 (0)	OR 0.33 (95% CI: 0.01, 8.13), p=0.50
			Placebo	117	1 (0.9)	NA
Chronic migra	ine			_		
0.1.1.1.1			FRE 225 mg	188	0 (0)	OR 0.20 (95% CI: 0.01, 4.22), p=0.30
Sakai et al 2021a ⁸³	Low	12 weeks	FRE 675 mg	190	0 (0)	OR 0.20 (95% CI: 0.01, 4.17), p=0.30
			Placebo	191	2 (1.0)	NA
			FRE 225 mg	379	7 (2)	OR 0.86 (95% CI: 0.31, 2.40), p=0.78
HALO CM ⁷⁶	Low	12 weeks	FRE 675 mg	376	5 (1)	OR 0.62 (95% CI: 0.20, 1.91), p=0.40
			Placebo	375	8 (2)	NA
Episodic and	chronic mi	igraine				
			FRE quarterly	276	1 (<1)	OR 0.33 (95% CI: 0.03, 3.21), p=0.34
FOCUS ^{85*}	Low	3 months	FRE monthly	285	4 (1)	OR 1.30 (95% CI: 0.29, 5.86), p=0.73
			Placebo	277	3 (1)	NA
Subgroups of	patients w	/ith >2 prior treat	ment failures - I	Episodi	c and chronic mi	graine
		3 months	FRE quarterly	140	1 (<1)	OR 0.33 (95% CI: 0.03, 3.22), p=0.34
		2 Tx failures	FRE monthly	134	1 (<1)	OR 0.35 (95% CI: 0.04, 3.37), p=0.36
			Placebo	141	3 (2)	NA
FOCUS ⁸⁶	Low	3 months	FRE quarterly	85	0	Not estimable
		3 Tx failures	FRE monthly	99	3 (3)	Not estimable
			Placebo	81	0	NA
		3 months	FRE quarterly	49	0	Not estimable
		4 Tx failures	FRE monthly	50	0	Not estimable
			Placebo	54	0	NA

Table A75	Adverse events	leading to	discontinuation,	fremanezumab
-----------	----------------	------------	------------------	--------------

CI = confidence interval, FRE = fremanezumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias.

<u>Notes</u>

Blue text indicates RACS calculated comparisons.

* In the FOCUS trial, there were three treatment groups; FRE quarterly, monthly and placebo. In the FRE quarterly group, patients received 675 mg FRE and 107 (39%) had episodic migraine, while 169 (61%) had chronic migraine. In the FRE monthly group 110 (39%) patients had episodic migraine and received 225 mg FRE monthly while 173 (61%) of patients had chronic migraine and received 675 mg FRE as a loading dose then 225 mg monthly. In the placebo group, 112 (40%) of patients had episodic migraine while 167 (60%) had chronic migraine.

Table A76	Adverse events	leading to	discontinuation,	galcanezumab
-----------	----------------	------------	------------------	--------------

Study name	ROB	Timepoint of assessment	Intervention and dose	n	Number discontinue d (%)	Difference between groups
Episodic migrai	ne					
Dodick et al	Low	6 months	GAL 150 mg	107	0 (0)	OR 0.34 (95% CI: 0.01, 8.43),
2014a ⁸⁸	LOW	omonuis	Placebo	110	1 (0.9)	p=0.51
			GAL 120 mg	213	9 (4.2)	OR 1.87 (95% CI: 0.75, 4.66), p=0.18
EVOLVE-189	Low	6 months	GAL 240 mg	212	7 (3.3)	OR 1.44 (95% CI: 0.54, 3.85), p=0.46
			Placebo	433	10 (2.3)	NA
			GAL 120 mg	226	5 (2.2)	OR 1.28 (95% CI: 0.41, 3.96), p=0.67
EVOLVE-291	Low	6 months	GAL 240 mg	228	9 (4.0)	OR 2.33 (95% CI: 0.89, 6.11), p=0.09
			Placebo	461	8 (1.7)	NA
			GAL 120 mg	115	5 (4.4)	OR 22.95 (95% CI: 1.26, 418.66), p=0.03
Sakai et al 2020a ⁹³	Low	6 months	GAL 240 mg	114	2 (1.8)	OR 10.24 (95% CI: 0.49, 215.18), p=0.13
			Placebo	230	0 (0.0)	NA
		1–12 weeks	GAL 120 mg	70	0 (0)	Not estimable
Skljarevski et	Low	I-IZ WEEKS	Placebo	137	0 (0)	Not estimable
al 2018 ¹⁰⁰	LOW	12–24 weeks	GAL 120 mg	63	0 (0)	- Not estimable
			Placebo	125	0 (0)	Notestinable
PERSIST 2022 ¹¹²	Low	3 months	GAL 120 mg	261	6 (2.3)	OR 6.07 (95% CI: 0.73, 50.78), p=0.09
2022112			Placebo	259	1 (0.4)	NA
Episodic and ch	nronic m	igraine			-	
CGAJ ^{105*}	High	12 months	GAL 120 mg	129	6 (4.7)	OR 0.89 (95% CI: 0.28, 2.62),
	i ligit		GAL 240 mg	130	7 (5.0)	p=0.79
CONQUER ^{106*}	Low	3 months	GAL 120 mg	232	1 (<1)	OR 2.99 (95% CI: 0.12, 73.71),
*	LOW		Placebo	230	0	p=0.50

Abbreviations

CI = confidence interval, GAL = galcanezumab, n = number of patients, OR = odds ratio, NA = not applicable, RoB = risk of bias.

Notes

Blue text indicates RACS calculated comparisons.

* In the CGAJ trial there were two treatment groups; GAL 120 mg and GAL 240 mg. In the GAL 120 mg group 80.7% of patients had episodic migraine and 19.3% of patients had chronic migraine. In the 240 mg group, 77.0% of patients had episodic migraine and 23.0% of patients had chronic migraine. ** In the CONQUER trial there were two treatment groups, GAL 120 mg and Placebo. In the GAL 120 mg group 59% of patients had

** In the CONQUER trial there were two treatment groups, GAL 120 mg and Placebo. In the GAL 120 mg group 59% of patients had episodic migraine and 41% of patients had chronic migraine. In the placebo group, 58% of patients had episodic migraine and 43% of patients had chronic migraine.

Appendix H: Sensitivity Analyses

Sensitivity analyses

Figure A1 MMD, episodic migraine – Erenumab 70 mg

	Exp	erimenta	al	(Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 1 month									
EMPOWER 2021	-2.66	4.1464	325	-1.69	4.14	324	0.0%	-0.97 [-1.61, -0.33]	_
STRIVE 2017 Subtotal (95% CI)	-2.32	3.6806	312 312	-0.9	3.614	316 316	100.0% 100.0%	-1.42 [-1.99, -0.85] - 1.42 [-1.99, -0.85]	
Heterogeneity: Not ap	nlicable					0.0			•
Test for overall effect:	•		0001)						
			,						
1.1.2 2 months									
EMPOWER 2021	-3.68	4.2663	316	-2.48	4.2798	318	0.0%	-1.20 [-1.87, -0.53]	
STRIVE 2017	-2.93	3.6806	312	-1.39	3.7043	316	100.0%	-1.54 [-2.12, -0.96]	
Subtotal (95% CI)			312			316	100.0%	-1.54 [-2.12, -0.96]	◆
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z= 5.23	(P < 0.0)	0001)						
1.1.3 3 months									_
ARISE		3.3586	282		3.3941	288	43.9%	-1.10 [-1.65, -0.55]	
EMPOWER 2021		4.3732	306		4.4017	310	0.0%	-1.10 [-1.79, -0.41]	_
STRIVE 2017		3.5327	312		3.7043	316	42.1%	-1.26 [-1.83, -0.69]	
Sun 2016	-3.4	4.0792	104	-2.3	3.7108	153	14.0%	-1.10 [-2.08, -0.12]	
Subtotal (95% CI)			698			757	100.0%	-1.17 [-1.53, -0.80]	-
Heterogeneity: Tau ² =				(P = 0.9)	31); I² = 0	%			
Test for overall effect:	∠=6.23	(P < 0.0)	UUU1)						
									-2 -1 0 1 2
Test for subaroun diff			00.46	a (5	0.541 17	~~~			Favours Erenumab Favours Placebo

Test for subgroup differences: $Chi^2 = 1.33$, df = 2 (P = 0.51), $l^2 = 0\%$

Abbreviations

CI = confidence interval, **IV** = inverse variance, **SD** = standard deviation.

Figure A2 MMD, episodic migraine – Erenumab 140 mg

	Er	renumab		F	lacebo			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.2.1 1 month									
EMPOWER 2021	-3.12	4.096	214	-1.69	4.14	324	0.0%	-1.43 [-2.14, -0.72]	_
STRIVE 2017	-2.72	3.6255	318	-0.9	3.614		100.0%	-1.82 [-2.38, -1.26]	
Subtotal (95% CI)			318			316	100.0%	-1.82 [-2.38, -1.26]	•
Heterogeneity: Not a	• •								
Test for overall effect	t: Z = 6.33	8 (P < 0.0	0001)						
1.2.2 2 months									
EMPOWER 2021	-3.88	4.1522	205	-2.48	4.2798	318	0.0%	-1.40 [-2.14, -0.66]	_
STRIVE 2017	-3.1	3.6255	318	-1.39	3.7043		100.0%		
Subtotal (95% CI)			318			316	100.0%	-1.71 [-2.28, -1.14]	◆
Heterogeneity: Not a	pplicable	•							
Test for overall effect	t: Z = 5.87	7 (P < 0.0	0001)						
1.2.3 3 months									
EMPOWER 2021	-4.79	4.232	199	-3.1	4.4017	310	0.0%	-1.69 [-2.46, -0.92]	
LIBERTY 2018	-1.8	5.2307	76	-0.5	4.1533	69	12.5%	-1.30 [-2.83, 0.23]	- _+
STRIVE 2017	-3.5	3.7161	318	-1.71	3.7043	316	87.5%	-1.79 [-2.37, -1.21]	
Subtotal (95% CI)			394			385	100.0%	-1.73 [-2.27, -1.19]	◆
Heterogeneity: Tau ²	= 0.00; C	hi² = 0.34	l, df = 1	(P = 0.9	56); I² = 0	%			
Test for overall effect	t: Z = 6.27	?(P < 0.0	0001)						
								-	
									-4 -2 0 2 4
Test for subaroun di	fforoncoc		1 N O N I	- 27P -	0.06\ 12	- 0%			Favours erenumab Favours placebo

Test for subgroup differences: $Chi^2 = 0.08$, df = 2 (P = 0.96), $I^2 = 0\%$

Abbreviations

CI = confidence interval, IV = inverse variance, SD = standard deviation.

	F	Placebo		EF	Renumab			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
3.1.1 1 month									
EMPOWER 2021	-1.63	2.4399	123	-0.3	2.4793	127	0.0%	-1.33 [-1.94, -0.72]	_
STRIVE 2017	-0.78	2.2443	312	-0.03	2.2587		100.0%	-0.75 [-1.10, -0.40]	
Subtotal (95% CI)			312			316	100.0%	-0.75 [-1.10, -0.40]	•
Heterogeneity: Not a	pplicable	9							
Test for overall effect	: Z= 4.17	7 (P < 0.0	001)						
3.1.2 2 months									
EMPOWER 2021	-2.03	2.6617	123	-0.53	2.592	127	0.0%	-1.50 [-2.15, -0.85]	_
STRIVE 2017	-1.1	2.2443	312	-0.34	2.2587	316	100.0%	-0.76 [-1.11, -0.41]	
Subtotal (95% CI)			312			316	100.0%	-0.76 [-1.11, -0.41]	•
Heterogeneity: Not aj	pplicable	9							
Test for overall effect	: Z = 4.23	8 (P < 0.0	001)						
3.1.3 3 months									
ARISE	-1.2	1.6793	282	-0.6	1.6971	288	57.8%	-0.60 [-0.88, -0.32]	
EMPOWER 2021	-1.84	2.8835	123	-0.49	2.9301	127	0.0%	-1.35 [-2.07, -0.63]	
STRIVE 2017	-1.12	2.2443	312	-0.33	2.2587	316	35.8%	-0.79 [-1.14, -0.44]	-
Sun 2016	-2.5	3.0594	104	-1.4	3.7108	153	6.4%	-1.10 [-1.93, -0.27]	_
Subtotal (95% CI)			698			757	100.0%	-0.70 [-0.91, -0.49]	♦
Heterogeneity: Tau ² =	= 0.00; C'	hi ^z = 1.64	4, df = 2	(P = 0.4	44); I ² = 0	%			
Fest for overall effect	: Z = 6.51	I (P < 0.0	0001)						
3.1.4 4-6 months									
Sakai 2019	-1.19	2.6436	135	0.88	2.5946	136	47.0%	-2.07 [-2.69, -1.45]	
STRIVE 2017	-1.1	1.7664	312	-0.2	1.7776	316	53.0%	-0.90 [-1.18, -0.62]	-
Subtotal (95% CI)			447			452	100.0%	-1.45 [-2.59, -0.31]	
Heterogeneity: Tau ² = Test for overall effect			•	1 (P = 0	1.0008); I ^a	'= 91%			
								-	-4 -2 0 2 4
									Favours erenumab Favours placebo
Test for subaroup dif	ferences	:: Chi ² = 1	1.63.df	= 3 (P =	0.65). P	= 0%			

Figure A3 MHD with acute medication use, episodic migraine – Erenumab 70 mg

Test for subgroup differences: $Chi^2 = 1.63$, df = 3 (P = 0.65), $l^2 = 0\%$

Abbreviations

CI = confidence interval, **IV** = inverse variance, **SD** = standard deviation.

	F	Placebo		Er	enumab			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
3.2.1 1 month									
EMPOWER 2021		2.5044	80		2.4793	127	0.0%	-1.60 [-2.30, -0.90]	
LIBERTY 2018		2.1817	119		2.2271	124	28.8%	-1.40 [-1.95, -0.85]	
STRIVE 2017 Subtotal (95% CI)	-1.4	2.2659	318 437	-0.03	2.2587	316 440	71.2% 100.0%	-1.37 [-1.72, -1.02] - 1.38 [-1.68, -1.08]	▲
Heterogeneity: Tau ² =	: 0.00; C	hi² = 0.01	, df = 1	(P = 0.9)	93); i² = 0	%			
Test for overall effect	Z = 9.09	9 (P ≤ 0.0	0001)						
3.2.2 2 months									
EMPOWER 2021	-2.28	2.5938	80	-0.53	2.592	127	0.0%	-1.75 [-2.48, -1.02]	
LIBERTY 2018		2.1817	119		3.3407	124		-1.90 [-2.61, -1.19]	← <u>∎</u>
STRIVE 2017	-1.56	2.2659	318	-0.34	2.2587	316		-1.22 [-1.57, -0.87]	
Subtotal (95% CI)			437				100.0%	-1.49 [-2.14, -0.84]	
Heterogeneity: Tau ² =				(P = 0.1	09); I * = 6	5%			
Test for overall effect:	Z= 4.48	3 (P < 0.0	0001)						
3.2.3 3 months									
EMPOWER 2021		2.9516	80		2.9301	127	0.0%	-1.90 [-2.72, -1.08]	
LIBERTY 2018		2.1726	118		3.2863	120	35.0%	-1.80 [-2.51, -1.09]	← <u>∎</u>
STRIVE 2017	-1.56	2.2659	318	-0.33	2.2587	316		-1.23 [-1.58, -0.88]	
Subtotal (95% CI)			436	<u> </u>			100.0%	-1.43 [-1.96, -0.90]	
Heterogeneity: Tau ² = Test for overall effect:			•	(P = 0.1	16);1=5	0%			
3.2.4 4-6 months									
Sakai 2019	-1.16	2.5946	136	0.00	2.5946	136	40.4%	-2.04 [-2.66, -1.42]	
STRIVE 2017		1.7833	318		1.7776	316		-1.40 [-1.68, -1.12]	
Subtotal (95% CI)	-1.0	1.1033	454	-0.2	1.000		100.0%	-1.66 [-2.27, -1.04]	
Heterogeneity: Tau ² =	0.15; C	hi² = 3.44	, df = 1	(P = 0.)	06); I² = 7				
Test for overall effect	Z = 5.28	8 (P < 0.0	0001)						
									-21_01_2
Test for subgroup dif	ferences	: Chi r = C).67, df	= 3 (P =	0.88), I ^z	= 0%			Favours erenumab Favours placebo

Figure A4 MHD with acute medication use, episodic migraine – Erenumab 140 mg

up differences: Chi² = 0.67, df = 3 (P = 0.88), l² = 0%

Abbreviations

CI = confidence interval, **IV** = inverse variance, **SD** = standard deviation.

Figure A5 Response rate (>50%), episodic migraine – Erenumab 70 mg

	Erenum		Placet			Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
4.1.1 1 month								
EMPOWER 2021	128	329	89	330	0.0%	1.72 [1.24, 2.40]		
STRIVE 2017	102	312	49	316	100.0%	2.65 [1.80, 3.89]		
Subtotal (95% CI)		312		316	100.0%	2.65 [1.80, 3.89]		
Fotal events	102		49				_	
Heterogeneity: Not app								
Fest for overall effect: 2		P ≺ 0.0	0001)					
I.1.2 2 months								
EMPOWER 2021	175	329	122	330	0.0%	1.94 [1.42, 2.64]		
3TRIVE 2017	124	312	77		100.0%	2.05 [1.45, 2.88]		
Subtotal (95% CI)	124	312			100.0%	2.05 [1.45, 2.88]		
	404	312	77	510	100.070	2.00 [1.40, 2.00]		
Fotal events	124		77					
Heterogeneity: Not app								
Fest for overall effect: 2	Z = 4.10 (I	P < 0.0	001)					
I.1.3 3 months							_	
ARISE	112	282	85	288	40.1%	1.57 [1.11, 2.23]		
EMPOWER 2021	182	329	148	330	0.0%	1.52 [1.12, 2.07]		
STRIVE 2017	129	312	83	316	42.8%	1.98 [1.41, 2.77]	│ ─-■	
3un 2016	46	99	43	144	17.1%	2.04 [1.20, 3.47]		
Subtotal (95% CI)		693		748	100.0%	1.81 [1.46, 2.26]	•	
otal events	287		211					
Heterogeneity: Tau ² =		°= 1 09		P = 0.53	8); ² = 0%			
Fest for overall effect: 2				0.0	-,,, - 0 /0			
4.4.4 months								
1.1.4 4 months								
STRIVE 2017	128	312	91	316	100.0%	1.72 [1.23, 2.40]		
	128	312 312	91		100.0% 100.0%	1.72 [1.23, 2.40] 1.72 [1.23, 2.40]	1	
STRIVE 2017 Subtotal (95% CI)							1	
STRIVE 2017 Subtotal (95% CI) Fotal events	128		91 91				*	
STRIVE 2017 Subtotal (95% CI)	128 plicable	312	91				*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app	128 plicable	312	91				*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months	128 plicable Z = 3.20 (I	312 P = 0.0	91 01)	316	100.0%	1.72 (1.23, 2.40)	*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not ap Fest for overall effect: 2 I.1.5 5 months STRIVE 2017	128 plicable	312 P = 0.0 312	91	316 316	100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01]	*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI)	128 plicable Z = 3.20 (1 147	312 P = 0.0	91 01) 92	316 316	100.0%	1.72 (1.23, 2.40)	*	
STRIVE 2017 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Total events	128 plicable Z = 3.20 (1 147 147	312 P = 0.0 312	91 01)	316 316	100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01]	*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not ap Fest for overall effect: 2 I.1.5 5 months STRIVE 2017	128 plicable Z = 3.20 (1 147 147 plicable	312 P = 0.0 312 312 312	91 01) 92 92	316 316	100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01]	*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2	128 plicable Z = 3.20 (1 147 147 plicable	312 P = 0.0 312 312 312	91 01) 92 92	316 316	100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01]	*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.6 6 months	128 plicable Z = 3.20 (I 147 147 plicable Z = 4.61 (I	312 P = 0.0 312 312 P < 0.0	91 01) 92 92 0001)	316 316 31 6	100.0% 100.0% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01]	*	
STRIVE 2017 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 2 STRIVE 2017 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 2 I.1.6 6 months STRIVE 2017	128 plicable Z = 3.20 (1 147 147 plicable	312 P = 0.0 312 312 P < 0.0 312	91 01) 92 92	316 316 316 316	100.0% 100.0% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97]		
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.6 6 months STRIVE 2017 Subtotal (95% CI)	128 plicable Z = 3.20 (1 147 plicable Z = 4.61 (1 147	312 P = 0.0 312 312 P < 0.0	91 01) 92 92 0001) 93	316 316 316 316	100.0% 100.0% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01]	*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.6 6 months STRIVE 2017 Subtotal (95% CI) Fotal events	128 plicable Z = 3.20 (1 147 plicable Z = 4.61 (1 147 147	312 P = 0.0 312 312 P < 0.0 312	91 01) 92 92 0001)	316 316 316 316	100.0% 100.0% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97]	*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fotal events Heterogeneity: Not app	128 plicable Z = 3.20 (1 147 plicable Z = 4.61 (1 147 plicable 247 plicable	312 P = 0.0 312 312 P < 0.0 312 312 312	91 01) 92 92 0001) 93 93	316 316 316 316	100.0% 100.0% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97]	*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2	128 plicable Z = 3.20 (1 147 plicable Z = 4.61 (1 147 plicable 247 plicable	312 P = 0.0 312 312 P < 0.0 312 312 312	91 01) 92 92 0001) 93 93	316 316 316 316	100.0% 100.0% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97]	*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 Heterogeneity: Not app Fest for overall effect: 2 I.1.7 4-6 months	128 plicable Z = 3.20 (I 147 147 plicable Z = 4.61 (I 147 147 plicable Z = 4.53 (I	312 P = 0.0 312 312 P < 0.0 312 312 P < 0.0	91 01) 92 92 0001) 93 93 0001)	316 316 316 316 316	100.0% 100.0% 100.0%	1.72 (1.23, 2.40) 2.17 (1.56, 3.01) 2.17 (1.56, 3.01) 2.14 (1.56, 3.01] 2.14 (1.54, 2.97) 2.14 (1.54, 2.97)	*	
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2	128 plicable Z = 3.20 (1 147 plicable Z = 4.61 (1 147 plicable 247 plicable	312 P = 0.0 312 312 P < 0.0 312 312 312	91 01) 92 92 0001) 93 93	316 316 316 316	100.0% 100.0% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97]	*	•
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 Heterogeneity: Not app Fest for overall effect: 2 I.1.7 4-6 months	128 plicable Z = 3.20 (I 147 147 plicable Z = 4.61 (I 147 147 plicable Z = 4.53 (I	312 P = 0.0 312 312 P < 0.0 312 312 P < 0.0	91 01) 92 92 0001) 93 93 0001)	316 316 316 316 316	100.0% 100.0% 100.0%	1.72 (1.23, 2.40) 2.17 (1.56, 3.01) 2.17 (1.56, 3.01) 2.14 (1.56, 3.01] 2.14 (1.54, 2.97) 2.14 (1.54, 2.97)		•
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.6 6 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.7 4-6 months Statai 2019	128 plicable Z = 3.20 (l 147 147 plicable Z = 4.61 (l 147 plicable Z = 4.53 (l 39	312 P = 0.0 312 312 P < 0.0 312 312 P < 0.0 135	91 01) 92 92 0001) 93 93 0001) 10	316 316 316 316 316 316 316	100.0% 100.0% 100.0% 100.0% 42.8%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 5.12 [2.43, 10.77]		-8-
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.6 6 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.7 4-6 months Sakai 2019 STRIVE 2017 Subtotal (95% CI)	128 plicable Z = 3.20 (l 147 147 plicable Z = 4.61 (l 147 plicable Z = 4.53 (l 39	312 P = 0.0 312 312 P < 0.0 312 312 P < 0.0 135 312	91 01) 92 92 0001) 93 93 0001) 10	316 316 316 316 316 316 316	100.0% 100.0% 100.0% 100.0% 42.8% 57.2%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 5.12 [2.43, 10.77] 2.11 [1.51, 2.95]		-
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.6 6 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.7 4-6 months Sakai 2019 STRIVE 2017 Subtotal (95% CI) Fotal events	128 plicable Z = 3.20 (1 147 147 plicable Z = 4.61 (1 147 147 plicable Z = 4.53 (1 39 135 174	312 P = 0.0 312 312 P < 0.0 312 312 P < 0.0 135 312 447	91 01) 92 92 0001) 93 93 0001) 10 84 94	316 316 316 316 316 316 316 316 316 316	100.0% 100.0% 100.0% 100.0% 42.8% 57.2% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 5.12 [2.43, 10.77] 2.11 [1.51, 2.95] 3.08 [1.30, 7.29]		
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.6 6 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.7 4-6 months Sakai 2019 STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² =	128 plicable Z = 3.20 (1 147 147 plicable Z = 4.61 (1 147 147 plicable Z = 4.53 (1 39 135 174 0.31; Chi ²	312 P = 0.0 312 312 P < 0.0 312 312 P < 0.0 135 312 447 * = 4.57	91 01) 92 92 0001) 93 93 0001) 10 84 94 ', df = 1 (F	316 316 316 316 316 316 316 316 316 316	100.0% 100.0% 100.0% 100.0% 42.8% 57.2% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 5.12 [2.43, 10.77] 2.11 [1.51, 2.95] 3.08 [1.30, 7.29]		
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.6 6 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.7 4-6 months Sakai 2019 STRIVE 2017 Subtotal (95% CI) Fotal events	128 plicable Z = 3.20 (1 147 147 plicable Z = 4.61 (1 147 147 plicable Z = 4.53 (1 39 135 174 0.31; Chi ²	312 P = 0.0 312 312 P < 0.0 312 312 P < 0.0 135 312 447 * = 4.57	91 01) 92 92 0001) 93 93 0001) 10 84 94 ', df = 1 (F	316 316 316 316 316 316 316 316 316 316	100.0% 100.0% 100.0% 100.0% 42.8% 57.2% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 5.12 [2.43, 10.77] 2.11 [1.51, 2.95] 3.08 [1.30, 7.29]		-
STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.6 6 months STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 2 I.1.7 4-6 months Sakai 2019 STRIVE 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² =	128 plicable Z = 3.20 (1 147 147 plicable Z = 4.61 (1 147 147 plicable Z = 4.53 (1 39 135 174 0.31; Chi ²	312 P = 0.0 312 312 P < 0.0 312 312 P < 0.0 135 312 447 * = 4.57	91 01) 92 92 0001) 93 93 0001) 10 84 94 ', df = 1 (F	316 316 316 316 316 316 316 316 316 316	100.0% 100.0% 100.0% 100.0% 42.8% 57.2% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 5.12 [2.43, 10.77] 2.11 [1.51, 2.95] 3.08 [1.30, 7.29]		-
STRIVE 2017 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 2 I.1.5 5 months STRIVE 2017 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 2 I.1.6 6 months STRIVE 2017 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 2 I.1.7 4-6 months Sakai 2019 STRIVE 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² =	128 plicable Z = 3.20 (1 147 147 plicable Z = 4.61 (1 147 147 plicable Z = 4.53 (1 39 135 174 0.31; Chi ²	312 P = 0.0 312 312 P < 0.0 312 312 P < 0.0 135 312 447 * = 4.57	91 01) 92 92 0001) 93 93 0001) 10 84 94 ', df = 1 (F	316 316 316 316 316 316 316 316 316 316	100.0% 100.0% 100.0% 100.0% 42.8% 57.2% 100.0%	1.72 [1.23, 2.40] 2.17 [1.56, 3.01] 2.17 [1.56, 3.01] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 2.14 [1.54, 2.97] 5.12 [2.43, 10.77] 2.11 [1.51, 2.95] 3.08 [1.30, 7.29]		

Abbreviations

Figure A6 Response rate (>50%), episodic migraine – Erenumab 140 mg

$ 219 \\ 119 \\ 318 \\ 437 \\ $	89 6 49 55 4, df = 1 (f)001) 122 15 77 92 6, df = 1 (f)0001) 148 17 83 100 2, df = 1 (f	Total 330 124 316 440 > = 0.2 330 124 316 440 > = 0.2 330 124 316 440 > = 0.2 330 124 330 124 330 124 316	0.0% 28.4% 71.6% 100.0% 0); ² = 39% 0.0% 20.6% 79.4% 100.0% 0); ² = 0% 0.0% 21.1% 78.9%	Odds Ratio 1.H, Random, 95% CI 2.45 [1.71, 3.51] 5.77 [2.29, 14.57] 3.00 [2.05, 4.40] 3.62 [2.03, 6.45] 1.92 [1.36, 2.72] 3.28 [1.69, 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20] 2.60 [1.87, 3.63]	Odds Ratio M-H, Random, 95% Cl
$ 219 \\ 119 \\ 318 \\ 437 \\ $	89 6 49 55 4, df = 1 (f)001) 122 15 77 92 6, df = 1 (f)0001) 148 17 83 100 2, df = 1 (f	330 124 316 440 >= 0.2 330 124 316 440 >= 0.5 330 124 316	0.0% 28.4% 71.6% 100.0% 0); ² = 39% 0.0% 20.6% 79.4% 100.0% 0); ² = 0% 0.0% 21.1% 78.9%	2.45 [1.71, 3.51] 5.77 [2.29, 14.57] 3.00 [2.05, 4.40] 3.62 [2.03, 6.45] 1.92 [1.36, 2.72] 3.28 [1.69, 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	
$\begin{array}{c} & 119 \\ & 318 \\ & 437 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	6 49 55 4, df = 1 (f 1001) 122 15 77 92 6, df = 1 (f 00001) 148 17 83 100 2, df = 1 (f	124 316 440 >= 0.2 330 124 316 440 >= 0.5 330 124 316	28.4% 71.6% 100.0% 0); I ² = 39% 0.0% 20.6% 79.4% 100.0% 0); I ² = 0% 0.0% 21.1% 78.9%	5.77 [2.29, 14.57] 3.00 [2.05, 4.40] 3.62 [2.03, 6.45] 1.92 [1.36, 2.72] 3.28 [1.69, 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	
$\begin{array}{c} & 119 \\ & 318 \\ & 437 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	6 49 55 4, df = 1 (f 1001) 122 15 77 92 6, df = 1 (f 00001) 148 17 83 100 2, df = 1 (f	124 316 440 >= 0.2 330 124 316 440 >= 0.5 330 124 316	28.4% 71.6% 100.0% 0); I ² = 39% 0.0% 20.6% 79.4% 100.0% 0); I ² = 0% 0.0% 21.1% 78.9%	5.77 [2.29, 14.57] 3.00 [2.05, 4.40] 3.62 [2.03, 6.45] 1.92 [1.36, 2.72] 3.28 [1.69, 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	
<pre>3 318 437 hi² = 1.6 (P < 0.0) 3 219 7 119 3 318 437 hi² = 0.4 (P < 0.0) 219 3 118 437 hi² = 0.4 hi² = 0.4 3 18 437</pre>	49 55 4, df = 1 (f)001) 122 15 77 92 6, df = 1 (f)0001) 148 17 83 100 2, df = 1 (f	316 440 P = 0.2 330 124 316 440 P = 0.5 330 124 316	71.6% 100.0% 0); I ² = 39% 0.0% 20.6% 79.4% 100.0% 0); I ² = 0% 0.0% 21.1% 78.9%	3.00 [2.05, 4.40] 3.62 [2.03, 6.45] 1.92 [1.36, 2.72] 3.28 [1.69, 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	*
$\begin{array}{c} 437\\ \text{hi}^{2}=1.6\\ \text{i}~(P<0.0\\ 219\\ 219\\ 318\\ 437\\ \text{hi}^{2}=0.4\\ (P<0.0\\ 19\\ 318\\ 437\\ 318\\ 437\\ 318\\ 437\\ 318\\ 437\\ 318\\ 437\\ 318\\ 318\\ 318\\ 318\\ 318\\ 318\\ 318\\ 318$	55 4, df = 1 (f 0001) 122 15 77 92 6, df = 1 (f 00001) 148 17 83 100 2, df = 1 (f	440 = 0.2 330 124 316 440 = 0.5 330 124 316 330 124 316	100.0% 0); ² = 39% 0.0% 20.6% 79.4% 100.0% 0); ² = 0% 0.0% 21.1% 78.9%	3.62 [2.03, 6.45] 1.92 [1.36, 2.72] 3.28 [1.69, 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	•
) hi ² = 1.6 i (P < 0.0) 219) 119 3 318 (P < 0.0) 219 i 119 3 318 437 hi ² = 0.4 i 437 hi ² = 0.0	4, df = 1 (f 0001) 122 15 77 92 6, df = 1 (f 00001) 148 17 83 100 2, df = 1 (f	P = 0.2 330 124 316 440 P = 0.5 330 124 316	0); ² = 39% 0.0% 20.6% 79.4% 100.0% 0); ² = 0% 0.0% 21.1% 78.9%	1.92 [1.36, 2.72] 3.28 [1.69, 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	*
hi ² = 1.6 ; (P < 0.0 ; 219 , 119 , 318 437) hi ² = 0.4 ; (P < 0.0 ; 219 ; 119 ; 318 437 ; hi ² = 0.4 ; 437 ; hi ² = 0.0	4, df = 1 (f 0001) 122 15 77 92 6, df = 1 (f 00001) 148 17 83 100 2, df = 1 (f	330 124 316 440 P = 0.5 330 124 316	0.0% 20.6% 79.4% 100.0% 0); I ² = 0% 0.0% 21.1% 78.9%	3.28 [1.69] 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	*
<pre>' 119 ' 318 ' 318 '' '' '' '' '' '' '' '' '' '' '' '' ''</pre>	15 77 92 6, df = 1 (f 10001) 148 17 83 100 2, df = 1 (f	124 316 440 P = 0.5 330 124 316	20.6% 79.4% 100.0% 0); I ² = 0% 0.0% 21.1% 78.9%	3.28 [1.69] 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	*
<pre>' 119 ' 318 ' 318 '' '' '' '' '' '' '' '' '' '' '' '' ''</pre>	15 77 92 6, df = 1 (f 10001) 148 17 83 100 2, df = 1 (f	124 316 440 P = 0.5 330 124 316	20.6% 79.4% 100.0% 0); I ² = 0% 0.0% 21.1% 78.9%	3.28 [1.69] 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	*
<pre>' 119 ' 318 ' 318 '' '' '' '' '' '' '' '' '' '' '' '' ''</pre>	15 77 92 6, df = 1 (f 10001) 148 17 83 100 2, df = 1 (f	124 316 440 P = 0.5 330 124 316	20.6% 79.4% 100.0% 0); I ² = 0% 0.0% 21.1% 78.9%	3.28 [1.69] 6.37] 2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	*
<pre>3 318 437 hi² = 0.4 hi² = 0.4 (P < 0.0 219 318 437 hi² = 0.0</pre>	77 92 6, df = 1 (f)00001) 148 17 83 100 2, df = 1 (f	316 440 P = 0.5 330 124 316	79.4% 100.0% 0); I ² = 0% 0.0% 21.1% 78.9%	2.54 [1.81, 3.56] 2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	*
437) hi ² = 0.4 ((P < 0.0) 219) 119 } 318 437) hi ² = 0.0	92 6, df = 1 (F)0001) 148 17 83 100 2, df = 1 (F	440 P = 0.5 330 124 316	100.0% 0); I ^z = 0% 0.0% 21.1% 78.9%	2.67 [1.98, 3.62] 2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	▲
) hi ² = 0.4 (P < 0.0) 219) 119 3 318 437) hi ² = 0.0	92 6, df = 1 (F 00001) 148 17 83 100 2, df = 1 (F	9 = 0.5 330 124 316	0); I² = 0% 0.0% 21.1% 78.9%	2.18 [1.53, 3.10] 2.73 [1.43, 5.20]	
hi [≠] = 0.4 (P < 0.0) 219) 119 } 318 437 } hi [≠] = 0.0	6, df = 1 (F 00001) 148 17 83 100 2, df = 1 (F	330 124 316	0.0% 21.1% 78.9%	2.73 [1.43, 5.20]	_ <u>_</u> _
I(P < 0.0) 219) 119 } 318 437 } hi ² = 0.0	148 17 83 100 2, df = 1 (F	330 124 316	0.0% 21.1% 78.9%	2.73 [1.43, 5.20]	_ <u>_</u> _
6 119 3 318 437 9 hi ² = 0.0	17 83 100 2, df = 1 (F	124 316	21.1% 78.9%	2.73 [1.43, 5.20]	_ <u>_</u>
6 119 3 318 437 9 hi ² = 0.0	17 83 100 2, df = 1 (F	124 316	21.1% 78.9%	2.73 [1.43, 5.20]	_ <u>_</u>
318 437 hi ² = 0.0	83 100 2, df = 1 (F	316	21.1% 78.9%	2.73 [1.43, 5.20]	
437) hi ² = 0.0	100 2, df = 1 (F				
) hi² = 0.0	2, df = 1 (F	440		2.00[1.01]0.00]	-
hi² = 0.0	2, df = 1 (F		100.0%	2.63 [1.96, 3.54]	•
	00001)	° = 0.9	0); I² = 0%		
318	91	316	100.0%	2.44 [1.76, 3.39]	- <mark>-</mark> -
318		316	100.0%	2.44 [1.76, 3.39]	
}	91				
(P < 0.0	00001)				
318	92	316	100.0%	2.26 [1.63, 3.13]	│
318	~-		100.0%	2.26 [1.63, 3.13]	
}	92				-
(P < 0.0	00001)				
318	93	316	100.0%	2.31 [1.67, 3.20]	
318		316	100.0%	2.31 [1.67, 3.20]	●
ì	93				
:(P ≺ 0.0	00001)				
, 10e	10	106	20 R.W.	171 [2 22 0 02]	_
					│ _ _ _ [●]
		102	1001070	OLT LEVI, OLL	-
hi² = 1.6	4, df = 1 (F	P = 0.2	0); I² = 39%		
(P < 0.0					
(P < 0.0					0.05 0.2 1 5
) }	318 (P < 0.0 136 318 454 ini ² = 1.6 (P < 0.0	318 ; 93 (P < 0.00001) 136 10 1318 84 454 ; 94 hi ² = 1.64, df = 1 (f (P < 0.00001)	318 316 i 93 (P < 0.00001)	318 316 100.0% i 93 (P < 0.00001)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Abbreviations

Figure A7 Response rate (>50%), episodic migraine – fremanezumab 225/675 mg

	Fremanez	umab	Place	bo		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl	
4.4.1 Fremanezumal	o 225mg								
Bigal 2015b	53	95	36	104	52.5%	2.38 [1.35, 4.22]		│ ∎	
HALO EM	130	263	100	268	0.0%	1.64 [1.16, 2.32]			
Sakai 2021b	50	121	13	116	47.5%	5.58 [2.82, 11.02]			
Subtotal (95% CI)		216		220	100.0%	3.57 [1.55, 8.22]			
Total events	103		49						
Heterogeneity: Tau ² =	= 0.26; Chi ^z =	3.52, dt	′= 1 (P = I	0.06); P	²= 72%				
Test for overall effect	Z = 2.99 (P =	= 0.003)							
4.4.2 Fremanezumat	o 675mg								
Bigal 2015b	55	96	36	104	52.0%	2.53 [1.43, 4.49]		_ _	
HALO EM	132	269	100	268	0.0%	1.62 [1.15, 2.28]			
Sakai 2021b	53	117	13	116	48.0%	6.56 [3.32, 12.98]		∎	
Subtotal (95% CI)		213		220	100.0%	4.00 [1.57, 10.17]			
Total events	108		49						
Heterogeneity: Tau ² =	= 0.35; Chi ² =	4.40, dt	′= 1 (P = I	0.04); P	²= 77%				
Test for overall effect:	Z = 2.91 (P =	= 0.004)							
							0.01		100
							0.01	Favours placebo Favours fremanezuma	
Taet for cubaroun dif	foroneoe: Ch	iz = 0.03	df = 1/E) — n og	3) IZ = 1106			avoaro pracoso i avoaro nemanezama	×

Test for subgroup differences: Chi² = 0.03, df = 1 (P = 0.86), l² = 0%

<u>Abbreviations</u> CI = confidence interval, **M-H** = Mantel-Haenszel.

Figure A8 Response rate (>75%), episodic migraine - Erenumab 70 mg

	Erenun		Place			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% Cl
5.1.1 1 month								
EMPOWER 2021	58	329	50	330	0.0%	1.20 [0.79, 1.81]		_
STRIVE 2017	1	49	0	54	100.0%	3.37 [0.13, 84.70]		
Subtotal (95% CI)		49		54	100.0%	3.37 [0.13, 84.70]		
Total events	1		0					
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z=0.74 ((P = 0.4	6)					
5.1.2 2 months								
EMPOWER 2021	101	329	74	330	0.0%	1.53 [1.08, 2.17]		
STRIVE 2017	3	49	2	54	100.0%	1.70 (0.27, 10.60)		
Subtotal (95% CI)		49		54	100.0%	1.70 [0.27, 10.60]		
Total events	3		2					
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 0.56 ((P = 0.5	7)					
5.1.3 3 months								
EMPOWER 2021	124	329	86	330	0.0%	1.72 [1.23, 2.39]		
STRIVE 2017	7	49	1	54	100.0%	8.83 [1.05, 74.63]		
Subtotal (95% CI)		49		54	100.0%	8.83 [1.05, 74.63]		
Total events	7		1					
Heterogeneity: Not ap	oplicable							
Test for overall effect:		P = 0.0	5)					
			-,					
							0.05	0.2 1 5 2
							0.05	
Test for subaroup diff	oroncos:	Chi ř = 1	1 32 df=	2 (P =	0.52) IZ=	0%		Favours placebo Favours erenumab

Abbreviations

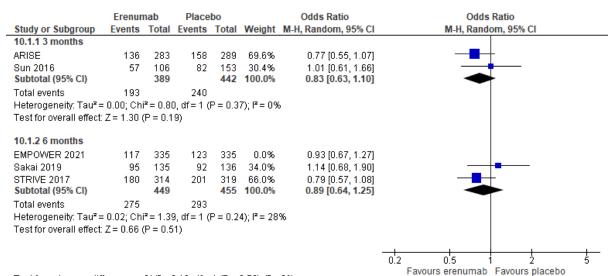
CI = confidence interval, **M-H** = Mantel-Haenszel.

Figure A9 Response rate (>75%), episodic migraine – Erenumab 140 mg

	Erenun	nab	Place	bo		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
5.2.1 1 month							
EMPOWER 2021	58	219	50	330	0.0%	2.02 [1.32, 3.09]	
LIBERTY 2018	11	119	0	124	51.3%	26.39 [1.54, 453.12]	· · · · · · · · · · · · · · · · · · ·
STRIVE 2017	5	58	0	54	48.7%	11.21 [0.60, 207.67]	
Subtotal (95% CI)		177		178	100.0%	17.39 [2.27, 133.35]	
Total events	16		0				
Heterogeneity: Tau ^z =	: 0.00; Chi	² = 0.13	7, df = 1 (P = 0.6	8); I² = 0%	6	
Test for overall effect:	Z= 2.75 (P = 0.0	106)				
5.2.2 2 months							
EMPOWER 2021	71	219	74	330	0.0%	1.66 [1.13, 2.44]	
LIBERTY 2018	9	119	3	124	57.5%	3.30 [0.87, 12.50]	
STRIVE 2017	12	58	2	54	42.5%	6.78 [1.44, 31.91]	
Subtotal (95% CI)		177		178	100.0%	4.48 [1.63, 12.31]	
Total events	21		5				
Heterogeneity: Tau ^z =	: 0.00; Chi	² = 0.48	3, df = 1 (P = 0.4	9); I ^z = 0%	6	
Test for overall effect:	Z=2.91 (P = 0.0	104)				
5.2.3 3 months							
EMPOWER 2021	94	219	86	330	0.0%	2.13 [1.48, 3.07]	
LIBERTY 2018	14	119	5	124	68.4%	3.17 [1.11, 9.11]	
STRIVE 2017	12	58	1	54	31.6%	13.83 [1.73, 110.44]	
Subtotal (95% CI)		177		178	100.0%	5.05 [1.28, 19.92]	
Total events	26		6				
Heterogeneity: Tau ^z =	: 0.43; Chi	² = 1.60	D, df = 1 (P = 0.2	1); I ^z = 38	%	
Test for overall effect:	Z=2.31 (P = 0.0	2)				
							0.01 0.1 1 10 1
					0.60) 12=		Favours placebo Favours erenumab

Test for subgroup differences: $Chi^2 = 1.40$, df = 2 (P = 0.50), $l^2 = 0\%$

Abbreviations


Figure A10 Response rate (100%), episodic migraine, erenumab 140 mg

	Erenum	nab	Place	bo		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl
6.1.1 1 month								
EMPOWER 2021	26	219	27	330	0.0%	1.51 [0.86, 2.67]		_
LIBERTY 2018	4	119	0	124	100.0%	9.70 [0.52, 182.17]		
Subtotal (95% CI)		119		124	100.0%	9.70 [0.52, 182.17]		
Total events	4		0					
Heterogeneity: Not ap	plicable							
Test for overall effect: 2	Z = 1.52 (P = 0.1	3)					
6.1.2 2 months								
EMPOWER 2021	38	219	40	330	0.0%	1.52 [0.94, 2.46]		
LIBERTY 2018	3	119	0	124	100.0%	7.48 [0.38, 146.39]		
Subtotal (95% CI)		119		124	100.0%	7.48 [0.38, 146.39]		
Total events	3		0					
Heterogeneity: Not ap	plicable							
Test for overall effect: 2	Z = 1.33 (P = 0.1	8)					
6.1.3 3 months								
EMPOWER 2021	50	219	47	330	0.0%	1.78 [1.15, 2.77]		
LIBERTY 2018	7	119	0	124	100.0%	16.60 [0.94, 293.96]		
Subtotal (95% CI)		119		124	100.0%	16.60 [0.94, 293.96]		
Total events	7		0					
Heterogeneity: Not ap	plicable							
Test for overall effect: 2	Z = 1.92 (P = 0.0	6)					
							0.01	0.1 1 10 100
Test for subgroup diffe	oroncoc: (∩hi≅ – (115 df-	2 (P -	0 0 2) IZ -	0%		Favours placebo Favours erenumab
Abbrevietione	siences. (oni – (5.10, ul –	2 (F -	0.33),1 -	0.0		

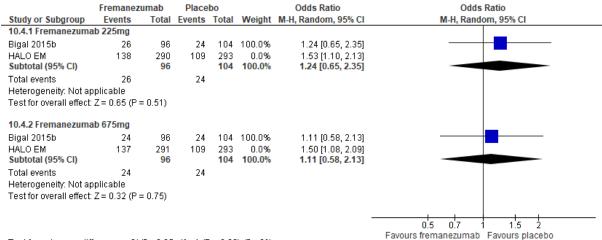
Abbreviations

CI = confidence interval, IV = inverse variance, SD = standard deviation.

Figure A11 Adverse events, episodic migraine – Erenumab 70 mg

Test for subgroup differences: $Chi^2 = 0.10$, df = 1 (P = 0.76), I² = 0%

Abbreviations


Figure A12 Adverse events, episodic migraine - Erenumab 140 mg

	Erenun	nab	Place	bo		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Random, 95% Cl
6.1.1 1 month								
EMPOWER 2021	26	219	27	330	0.0%	1.51 [0.86, 2.67]		
LIBERTY 2018	4	119	0	124	100.0%	9.70 [0.52, 182.17]		
Subtotal (95% CI)		119		124	100.0%	9.70 [0.52, 182.17]		
Total events	4		0					
Heterogeneity: Not ap	plicable							
Test for overall effect: .	Z = 1.52 (P = 0.1	3)					
6.1.2.2 months								
EMPOWER 2021	38	219	40	330	0.0%	1.52 [0.94, 2.46]		
LIBERTY 2018	3	119	0	124	100.0%	7.48 [0.38, 146,39]		
Subtotal (95% CI)		119	-	124		7.48 [0.38, 146.39]		
Total events	3		0					
Heterogeneity: Not ap	plicable							
Test for overall effect: .	Z = 1.33 (P = 0.1	8)					
6.1.3 3 months								
EMPOWER 2021	50	219	47	330	0.0%	1.78 [1.15, 2.77]		_
LIBERTY 2018	7	119	0	124	100.0%	16.60 [0.94, 293.96]		→
Subtotal (95% CI)		119		124	100.0%	16.60 [0.94, 293.96]		
Total events	7		0					
Heterogeneity: Not ap								
Test for overall effect: .	Z = 1.92 (P = 0.0	16)					
							0.01	0.1 1 10 100
								Favours placebo Favours erenumab
Test for subgroup diffe	erences:	$Chi^2 = 0$	0.15, df =	2 (P =	0.93), I² =	0%		-

Abbreviations

CI = confidence interval, M-H = Mantel-Haenszel

Figure A13 TRAEs, episodic migraine – Fremanezumab 225 mg and 675 mg

Test for subgroup differences: Chi² = 0.05, df = 1 (P = 0.82), l² = 0% Abbreviations

Figure A14 SAE, episodic migraine – Erenumab 70 mg

	Erenun	nab	Place	bo		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
3.1.1 3 months							
ARISE	3	283	5	289	77.4%	0.61 [0.14, 2.57]	
Sun 2016	1	106	0	153	22.6%	4.36 [0.18, 108.18]	
Subtotal (95% CI)		389		442	100.0%	0.95 [0.19, 4.79]	
Total events	4		5				
Heterogeneity: Tau ² =	0.34; Chi	i ^z = 1.2 ⁴	1, df = 1 (P = 0.2	7); I ² = 17 ⁴	%	
Test for overall effect:	Z = 0.06	(P = 0.9	15)				
3.1.2 6 months							
EMPOWER 2021	3	335	2	335	0.0%	1.50 [0.25, 9.06]	
Sakai 2019	1	135	4	136	29.8%	0.25 [0.03, 2.23]	_
STRIVE 2017	8	314	7	319	70.2%	1.17 [0.42, 3.25]	
Subtotal (95% CI)		449		455	100.0%	0.73 [0.18, 2.98]	
Total events	9		11				
Heterogeneity: Tau ² =	0.45; Chi	i ² = 1.59	9, df = 1 (P = 0.2	1); I² = 37 ⁴	%	
Test for overall effect:	Z=0.43 ((P = 0.6	(7)				
		-	-				
							0.005 0.1 1 10 200 Favours erenumab Favours placebo
Test for subgroup diff	foroncos.	⊂hiž – I	- 16 Af-	1 (P -	0.91) 12-	0%	Favours elenuman Favours placebo

Test for subgroup differences: Chi² = 0.06, df = 1 (P = 0.81), l² = 0%

Abbreviations

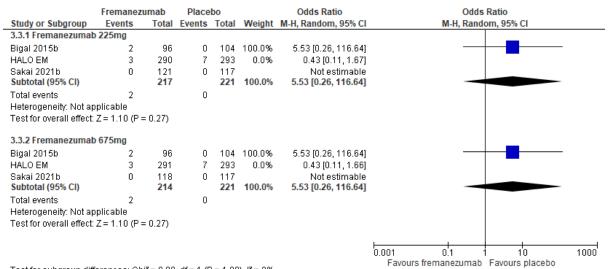

CI = confidence interval, **M-H** = Mantel-Haenszel

Figure A15 SAE, episodic migraine – Erenumab 140 mg

	Erenun	nab	Place	bo		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
11.2.1 3 months							
LIBERTY 2018	2	119	1	124	100.0%	2.10 [0.19, 23.50]	
Subtotal (95% CI)		119		124	100.0%	2.10 [0.19, 23.50]	
Total events	2		1				
Heterogeneity: Not a	pplicable						
Test for overall effect	: Z = 0.60 ((P = 0.5	i5)				
11.2.2 6 months							
EMPOWER 2021	0	224	2	335		Not estimable	
Sakai 2019	1	137	4	136	20.4%	0.24 [0.03, 2.20]	
STRIVE 2017	6	319	7	319	79.6%	0.85 [0.28, 2.57]	
Subtotal (95% CI)		456		455	100.0%	0.66 [0.24, 1.80]	•
Total events	7		11				
Heterogeneity: Tau ² :	= 0.01; Chi	r =1.01	1, df = 1 (l	P = 0.3	1); I ^z = 1%		
Test for overall effect	: Z = 0.81 ((P = 0.4	2)				
							0.002 0.1 1 10 500
							Favours erenumab Favours placebo
Tact for cubarous dif	foroncoc	⊂hi≅ – I	0.76 df-	1 /D -	0.201 12-0	104	

Test for subgroup differences: Chi² = 0.75, df = 1 (P = 0.39), l² = 0% <u>Abbreviations</u>

Figure A16 SAE, episodic migraine – Fremanezumab 225 mg and 675 mg

Test for subgroup differences: Chi² = 0.00, df = 1 (P = 1.00), l² = 0%

Abbreviations

CI = confidence interval, M-H = Mantel-Haenszel.

Figure A17 AEs leading to discontinuation, episodic migraine – Erenumab 70 mg

	Erenun	nab	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
12.1.1 3 months							
ARISE	5	283	1	289	41.3%	5.18 [0.60, 44.62]	
Sun 2016	3	106	2	153	58.7%	2.20 [0.36, 13.39]	
Subtotal (95% CI)		389		442	100.0%	3.13 [0.78, 12.50]	
Total events	8		3				
Heterogeneity: Tau ² =	0.00; Chi	² = 0.3€	6, df = 1 (l	P = 0.5	5); I ^z = 0%	6	
Test for overall effect: 2	Z=1.62 ((P = 0.1	1)				
12.1.2 6 months							
EMPOWER 2021	0	335	2	335	0.0%	0.20 [0.01, 4.16]	
Sakai 2019	2	135	1	136	15.3%	2.03 [0.18, 22.66]	
STRIVE 2017	7	314	8	319	84.7%	0.89 [0.32, 2.47]	
Subtotal (95% CI)		449		455	100.0%	1.01 [0.39, 2.59]	•
Total events	9		9				
Heterogeneity: Tau ² =	0.00; Chi	* = 0.38	3, df = 1 (l	P = 0.5	4); I ² = 0%	6	
Test for overall effect: 2	-						
							0.002 0.1 1 10 500
					0.40\18-		Favours Erenumab Favours placebo

Test for subgroup differences: $Chi^2 = 1.76$, df = 1 (P = 0.18), $l^2 = 43.3\%$

Abbreviations

Figure A18 AEs leading to discontinuation, episodic migraine – Erenumab 140 mg

	Erenun	nab	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
12.2.1 3 months							
LIBERTY 2018	0	119	1	124	100.0%	0.34 [0.01, 8.54]	
Subtotal (95% CI)		119		124	100.0%	0.34 [0.01, 8.54]	
Total events	0		1				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z=0.65 ((P = 0.5	2)				
12.2.2 6 months							
EMPOWER 2021	0	224	2	335	0.0%	0.30 [0.01, 6.22]	
Sakai 2019	0	137	1	136	9.3%	0.33 [0.01, 8.13]	
STRIVE 2017	7	319	8	319	90.7%	0.87 [0.31, 2.43]	
Subtotal (95% CI)		456		455	100.0%	0.80 [0.30, 2.12]	
Total events	7		9				
Heterogeneity: Tau ² =	0.00; Chi	r = 0.33	2, df = 1 (l	P = 0.5	7); I ^z = 0%		
Test for overall effect: .	Z= 0.46 ((P = 0.6	5)				
							0.001 0.1 1 10 1000
							Favours erenumab Favours placebo

Test for subgroup differences: $Chi^2 = 0.24$, df = 1 (P = 0.62), $I^2 = 0\%$

Abbreviations

CI = confidence interval, **M-H** = Mantel-Haenszel.

mg

Figure A19 AEs leading to discontinuation, episodic migraine – fremanezumab 225 mg and 675

	Fremanez	umab	Contr	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
12.3.1 Femanezumal	b 225mg						
HALO EM	5	290	5	293	0.0%	1.01 [0.29, 3.53]	
Sakai 2021b Subtotal (95% CI)	1	121 121	1	117 117	100.0% 100.0%	0.97 [0.06, 15.64] 0.97 [0.06, 15.64]	
Total events Heterogeneity: Not ar Test for overall effect:	•	= 0.98)	1				
12.3.2 Fremanezuma	ab 675mg						
HALO EM	5	291	5	293	0.0%	1.01 [0.29, 3.52]	_
Sakai 2021b Subtotal (95% CI)	0	118 118	1	117 117	100.0% 100.0%	0.33 [0.01, 8.13] 0.33 [0.01, 8.13]	
Total events Heterogeneity: Not ap	0 oplicable		1				
Test for overall effect:	Z = 0.68 (P	= 0.50)					
Taat far cubaraun diff							0.001 0.1 1 10 100 Favours fremanezumab Favours placebo

Test for subgroup differences: Chi² = 0.25, df = 1 (P = 0.62), l² = 0% ${\mbox{Abbreviations}}$

Appendix I: Economic evaluation study inclusion and exclusion overview

Study	Intervention	Comparator	Patient characteristics	Evaluation Outcome	Inclusion/Exclusion and Rationale
Included studies			·		
1. Mahon et al 2021 ¹¹⁴	-Erenumab	- standard of care	-At least 4 MMDs per month -Two or more previous preventive treatments failed	Cost per QALY gained	The cost-effectiveness study compared erenumab to BSC in the indicated population using costs per QALY gained as an outcome. It was included in our review.
2. Irimia et al 2021 ¹¹⁵	-Fremanezumab	-Erenumab -Galcanezumab -OnabotulinumtoxinA	-episodic migraine and/or CM -treatment duration of 12 weeks	Cost per patient	The costing study compared the cost of AEs for fremanezumab, with erenumab, galcanezumab, and onabotulinumtoxinA. It was included in our review.
3. Giannouchos et al 2019 ¹¹⁶	-Erenumab	-OnabotulinumtoxinA	Patients with CM	Cost per QALY gained	The cost-effectiveness study compared erenumab to onabotulinumtoxinA among chronic migraine patients using costs per QALY gained as an outcome. It was included in our review.
4. Porter et al 2019 ¹¹⁷	-Erenumab	-Placebo	 -4–14 headache days, -≥ 15 days, of which ≥ 8 were migraine 	Cost per migraine day	The costing study compared the cost of erenumab, with placebo. It was included in our review.
5. Sussman et al 2018 ¹¹⁸	-Erenumab	-OnabotulinumtoxinA -No preventive treatment	Adult, episodic and chronic migraine, failed preventive therapy	Cost per QALY gained	The cost-effectiveness study compared erenumab to onabotulinumtoxinA and no preventive treatment among episodic and chronic migraine patients using costs per QALY gained as an outcome. It was included in our review.
6. Lipton et al 2018 ¹¹⁹	-Erenumab	 standard of care OnabotulinumtoxinA 	episodic and chronic migraine, failed preventive therapy	Cost per QALY gained	The cost-effectiveness study compared erenumab to onabotulinumtoxinA and standard of care among episodic and chronic migraine patients using costs per QALY gained as an outcome. It was included in our review.

Table A77 Rationale for inclusion and exclusion

Study	Overview	Inclusion/Exclusion and Rationale
Excluded Studies		
7. Mahon et al 2020 ¹²⁰	A systematic review was undertaken. 8 studies were included based on eligibility. They in- volved onabotulinumtoxinA and topiramate as interventions and are not included in our review (as below).	The study is presented in <i>Table A78</i> as background.

Study	Overview	Inclusion/Exclusion and Rationale
8. NICE 2012 ¹²¹ and	Cost-utility analysis used a state-transition (Markov) model to estimate the cost-effectiveness	The studies involved a comparison of onabotulinumtoxinA
9. Royle et al 2011 ¹²²	of onabotulinumtoxinA vs placebo.	vs placebo and was not included our review.
10. Batty et al 2013 ¹²³	Cost-utility analysis used a state-transition (Markov) model to estimate the cost-effectiveness	The study involved a comparison of onabotulinumtoxinA vs
	of onabotulinumtoxinA vs placebo.	placebo and was not included our review.
11. SMC 2017 ¹²⁴	Cost-utility analysis used a state transition (Markov) model to estimate the cost-effectiveness	The study involved a comparison of onabotulinumtoxinA vs
	of onabotulinumtoxinA injections given every 12 weeks vs standard of care.	standard of care and was not included our review.
12. SMC 2013 (cited in	Cost-utility analysis used a state transition (Markov) model to estimate the cost-effectiveness	The study involved a comparison of onabotulinumtoxinA vs
Mahon et al 2020)	of onabotulinumtoxinA injections given every 12 weeks vs standard of care.	standard of care and was not included our review.
13. SMC 2017 ¹²⁵	Cost-utility analysis used a state transition (Markov) model to estimate the cost-effectiveness	The study involved a comparison of onabotulinumtoxinA vs
	of onabotulinumtoxinA injections given every 12 weeks vs standard of care.	standard of care and was not included our review.
14. SMC 2006 (cited in	Cost-utility analysis used a decision-tree model to estimate the cost-effectiveness of topir-	The studies involved a comparison of topiramate vs no
Mahon et al 2020) and	amate vs no preventive treatment.	treatment and was not included our review.
15. Brown et al 2006 ¹²⁶		
16. Ruggeri et al 2020 ¹²⁷	A systematic review was undertaken. 11 studies were included based on eligibility. Three	The study is presented in <i>Table A78</i> as background.
	studies evaluated erenumab [Sussman, ¹¹⁸ Lipton, ¹¹⁹ Giannouchos ¹¹⁶] and one study investi-	
	gated GammaCore as a first-line treatment before administering erenumab [Mwambur ¹²⁸].	
	These studies are included in our review. The remaining six were excluded with five being de-	
	tailed below. The review also included Batty et al 2013 ¹²³ which was excluded above.	
17. Yu et al 2010 ¹²⁹	Interventions included propranolol, timolol, divalproex sodium, amitriptyline, and topiramate.	The study did not include the relevant intervention and was
40.11		excluded.
18. Hens et al 2014 ¹³⁰	Early treatment with triptans economic study.	The study did not include the relevant intervention and was
10. D		excluded.
19. Ruggeri 2014 ¹³¹	OnabotulinumtoxinA economic study.	The study did not include the relevant intervention and was
		excluded.
20. Hollier-Han et al 2020132	OnabotulinumtoxinA economic study.	The study did not include the relevant intervention and was
		excluded.
21. Shauly et al 2019 ¹³³	Surgical decompression economic study.	The study did not include the relevant intervention and was
		excluded.
22. Amin et al 2021 ¹³⁴	Cost and resource use study.	The study did not include the relevant intervention,
		however, provided helpful background about costs and
		resource use for migraine. It is presented in <i>Table A78</i> as
00.5.11.1.1.00.40495		other economic studies.
23. Badia et al 2012 ¹³⁵	Cost and resource use study.	The study did not include the relevant intervention,
		however, provided helpful background about costs and
		resource use for migraine. It is presented in <i>Table A78</i> as
04.01 11 1.10004400		other economic studies.
24. Chandler et al 2021 ¹³⁶	Cost and resource use study.	The study did not include the relevant intervention,

Study	Overview	Inclusion/Exclusion and Rationale
		however, provided helpful background about costs and resource use for migraine. It is presented in <i>Table A78</i> as other economic studies.
25. Foster et al 2021 ¹³⁷	Cost and resource use study.	The study did not include the relevant intervention, however, provided helpful background about costs and resource use for migraine. It is presented in <i>Table A78</i> as other economic studies.
26. McAllister et al 2021 ¹³⁸	Cost and resource use study.	The study did not include the relevant intervention, however, provided helpful background about costs and resource use for migraine. It is presented in <i>Table A78</i> as other economic studies.
27. Pradalier et al 2004 ¹³⁹	Cost and resource use study.	The study did not include the relevant intervention, however, provided helpful background about costs and resource use for migraine. It is presented in <i>Table A78</i> as other economic studies.
28. Di Tanna et al 2019 ¹⁴⁰	Utility study.	The study did not include the relevant intervention, however, provided helpful background about utilities for migraine. It is presented in Table A78 as other economic studies.
29. Matza et al 2019 ¹⁴¹	Utility study.	The study did not include the relevant intervention, however, provided helpful background about utilities for migraine. It is presented in Table A78 as other economic studies.
30. Gerth et al 2001 ¹⁴²	Burden of disease study.	The study did not include the relevant intervention, however, provided helpful background about migraine burden of disease. It is presented in Table A78 as other economic studies.
31. Seddik et al 2021 ¹⁴³	Burden of disease study.	The study did not include the relevant intervention, however, provided helpful background about migraine burden of disease. It is presented in Table A78 as other economic studies.
32. Williams et al 2001 ¹⁴⁴	Burden of disease study.	The study did not include the relevant intervention, however, provided helpful background about migraine burden of disease. It is presented in Table A78 as other economic studies.
33. Akhtar et al 2019 ¹⁴⁵	Review of clinical and economic evidence.	The study did not include the relevant intervention, however, provided helpful background about clinical and

Study	Overview	Inclusion/Exclusion and Rationale
		economic evidence. It is presented in Table A78 as other economic studies.
HTA websites	HTA websites were searched, and results presented in <i>Table A79</i> .	NICE and CADTH economic model reviews are presented in Table A80 . These HTA agency reviews were selected as they involved comprehensive review team assessments of Sponsor submitted economic models. Other HTA reviews were not as detailed.

AE = adverse event, CADTH = The Canadian Agency for Drugs and Technologies in Health, HTA = health technology assessment, MMD = monthly migraine days, NICE = National Institute for Clinical Excellence, PSA = probabilistic sensitivity analysis, SMC = Scottish Medicines Consortium, QALY = quality-adjusted life year.

Appendix J: Data extraction template for other relevant economic studies

Table A78 Data extraction template for other economic studies

Reviews

Study	Country	Study overview	Findings	Relevance for this study
Mahon et al 2020 ¹²⁰	UK, Ireland	The authors undertook a systematic literature review of economic evaluations in migraine in the UK or Irish per- spective. The review was conducted between July 2017 and September 2018. It covered pharmacological inter- ventions for the treatment of chronic or episodic migraine, health state utility values for chronic or episodic migraine patients and cost and resource use data for chronic or epi- sodic migraine patients. MEDLINE, MEDLINE Daily, MED- LINE In-Process, Epub Ahead of Print electronic data- bases and HTA agency websites were searched. The re- view was used to formulate their Mahon 2021 ¹¹⁴ Markov model.	They identified 8 published economic evaluations and appraised their quality. They noted many studies were based on a similar core model and examined onabotu- linumtoxinA vs placebo or standard of care in patients with chronic migraine. A state-transition (Markov) model was often employed and health states in the models varied from 6 health states based on head- ache days/month to 13 health states: 6 on-treatment, 6 off-treatment, and death (Batty ¹²³). EQ-5D utilities were typically mapped from MSQ and SF-36 data. Clinical trials were generally used for model parame- ters.	The authors developed a decision tree plus Markov structure for cost-effectiveness modelling of migraine therapies. Health state included patient distribution across MMD frequencies. The model had a response-based stopping rule, and benefits and costs were calculated using MMD frequency.
Rugger i et al 2020 ¹²⁷	Global	The authors reviewed economic evaluations involving prophylaxis and treatments for migraine published be- tween 2009 and 2019. They searched PubMed, EMBASE and EconLit databases for trial-based non-experimental prospective studies or model-based economic evalua- tions.	A total of 227 articles were identified, and 11 studies were included based on eligibility. Three studies eval- uated erenumab (Sussman, ¹¹⁸ Lipton, ¹¹⁹ Gian- nouchos ¹¹⁶), and one study investigated GammaCore as a first-line treatment before administering ere- numab (Mwamburi ¹²⁸).	The authors concluded that the review suggested that evidence on the economic value of acute or prophylactic migraine treatment was generalisable, but studies about prophylactic treatments were transferable.
Akhtar et al 2019 ¹⁴⁵	Global	The authors reviewed the benefits and drawbacks of CGRP receptor blockers.	This was largely a review article of clinical evidence.	They noted double-blind placebo studies have demonstrated superior efficacy and minimal adverse effects and could be used in resource-limited countries. The high cost of these medications was suggested to be a major constraint in adoption in developing countries, despite the cost per QALY gained.

Costs and resource use

Study	Country	Study overview	Findings	Relevance for this study
Amin et al 2021 ¹³⁴	USA	The study compared direct costs and HCRU for PMM-naïve patients and patients with up to 3 PMM category switches before initiating CGRP mAbs. The study was a retrospective analysis of the IBM MarketScan database, which included subjects who initiated injectable A CGRP mAbs between May 2018 and December 2019. They were assessed in 4 groups based on the number of prior non-CGRP PMM classes used during the 24-month pre-index period (e.g. 0,1,2,3). The com- parison was made with and without propensity score matching.	A total of 23,288 patients were included with an average age of 45.4 (SD±12.0 years), 85.6% were females, and the mean Charlson Comorbidity Index was 0.69±1.2. The group with 3 prior non-CGRP PMM classes had the highest average an- nual unadjusted total healthcare costs per patient of (USD50,274±USD76,629); with the highest costs attributed to procedure/imaging-related expenses (USD20,105±USD36,401) and pharmacy (USD11,633±USD29,763). The group with no prior use had the lowest cost (USD25,288±USD41,427). Imaging and pro- cedural, pharmacy and outpatient costs were major compo- nents of the total cost. Neurologists constituted approximately half total physician costs.	Results suggest total direct healthcare cost and HCRU increased significantly with increasing use of PMM classes; anti-epileptics were the most-often-used PMM class (48.9%), followed by beta blockers (32.5%), antidepressants (28.1%) and onabotulinumtoxinA (27.3%). In the clinical evidence base, the identification of the subgroups who have used non-CGRP PMM classes prior to treatment will be important as clinical response and costs are likely to be different for PMM-naïve patients.
Badia et al 2012 ¹³⁵	Spain	The authors estimated national migraine costs in Spain using annual direct (pharmacy, primary care, specialist and emergency room visits) and in- direct (missed workdays and reduced work perfor- mance) costs calculated using estimates of preva- lence and 2001 Spanish unit costs. The study in- cluded a systematic review to attain prevalence estimates, unit costs from a Spanish healthcare costs database in 2001 values and IMS Health tracking information for medicines costs.	The national population with migraine was estimated to be 3.6 million with more than 92% being working age. Migraine was estimated to cost EUR1,076 million, with direct costs accounting for 32% of costs (EUR344 million), 39% for primary care, 29% for specialist visits, 21% for emergency treatment and 12% for drugs. Of the medicines costs, serotonin 5-HT1B/1D receptor agonists (triptans) accounted for 11% and ergots 1%. Pharmacy, primary, specialist and emergency care costs were specified at EUR23, EUR78, EUR57 and EUR41 per patient. The indirect cost was estimated at EUR732 million per year.	The model will need to include DRG, emergency and outpatient costs given the significance of primary, specialist and emergency care costs.
Chandler et al 2021 ¹³⁶	USA	The authors undertook a retrospective review of US data using the IBM MarketScan Early View Da- tabases until May 2019. They included adult pa- tients newly treated with erenumab with a migraine claim in the year prior to first erenumab claim (in- dex) and at least 1 year of continuous pre-index medical and pharmacy insurance coverage. This approach was used to assess pre- and post-ere- numab migraine characteristics, comorbidities, healthcare resource utilisation and associated costs.	The study included 9,753 patients with an average age of 46 (SD 12) years; 85% of patients were female, and 64% had at least one claim for chronic migraine. Most (70%) erenumab patients had a starting dose of 70 mg; 77% of patients in the 6-month follow-up sample (n=4437) remained on their initial erenumab dose. Persistence at 6-month follow-up was 47.3% with a mean (95% CI) proportion of days covered of 0.68 (0.67, 0.68). The authors indicated that claims for non-migraine headaches and anxiety were reduced in the post-erenumab period, and there was a shift to decreased use of acute and preventive medications. Inpatient hospitalisation	This real-world evidence provides background data about dosing, persistence at 6-month and reductions in claims for comorbidities, and decreased use of acute and preventive migraine medications. Hospitalisation and outpatient office visits remained similar pre- and post-erenumab use.

Study	Country	Study overview	Findings	Relevance for this study
			and outpatient office visits changes were minimal.	
Foster et al 2021 ¹³⁷	USA	The authors compared direct cost and HCRU among PMM-naïve patients and patients with up to 3 PMM categories before initiating CGRP mAbs between May 2018 and December. They were as- sessed in 4 groups based on the number of prior non-CGRP PMM classes (0,1,2,3). The compari- son was made with and without propensity score matching.	A total of 23,288 patients were included with an average age of 45.4; 86% were female, and the mean Charlson Comorbid- ity Index was 0.69. Similar cost results were reported as per Amin et al 2021. ¹³⁴	Total direct healthcare cost and HCRU increased significantly with increasing use of PMM classes. Similar conclusions can be drawn as per Amin et al 2021. ¹³⁴
McAlliste r et al 2021 ¹³⁸	USA	The authors examined HCRU and direct medical costs before and after fremanezumab treatment in- itiation using a retrospective, observational cohort study design. Data were sourced from September 2018 through June 2020 using the Midwest com- ponent of EMRClaims+®, an integrated health services database covering national commercial in- surance claims, Medicare claims and regional electronic medical records. Patients included in the cohort analysis were age ≥18 years and were ad- ministered fremanezumab. Patient-reported head- ache frequency, migraine pain intensity, composite migraine symptoms and HCRU were assessed pre-index and ≥1 month after fremanezumab initi- ation.	A total of 172 patients were eligible and of those who self-reported (n=129), around 84% reported improvement in head- ache frequency or symptoms after fremanezumab treatment. Headache frequency decreased by 63%, which reflects head- ache frequency being 22.24 (9.29) days per month pre-index versus 8.24 (7.42) days per month post-index (P<0.0001). Av- erage migraine pain intensity decreased by 18%, from 5.47 (3.19) pre-index versus 4.51 (3.34) post-index (P=0.014). Av- erage emergency room (ER) visits per month decreased from 0.72 to 0.54 (P=0.003), and mean outpatient visits per month decreased from 1.04 to 0.81 (P<0.001). Mean hospitalisations per month decreased, but the results did not reach statistical significance (P=0.095). Hospitalisation and ER costs de- creased, while outpatient costs increased, from pre-index to post-index; however, this was not statistically significant (P \ge 0.232).	The real-world evidence indicates significant reductions in headache frequency, migraine pain intensity and HCRU were observed after fremanezumab initiation in patients with migraine in the USA. This suggests clinical trial results are generalisable in practice.
Pradalier et al 2004 ¹³⁹	Franc e	The authors calculated national migraine costs in France from a general population sample of 10,585 individuals aged ≥15 years in 1999. The survey found 1,486 people experiencing head- aches, who were interviewed about healthcare re- source consumption in the previous 6 months. Unit costs were applied to use data for physician con- sultations, hospitalisation, medication use and di- agnostic/laboratory tests and were evaluated from a healthcare system perspective.	A prevalence of migraine of 17% was found, and total annual direct healthcare costs were estimated to be EUR128 per in- dividual with migraine in 1999, corresponding to EUR1,044 million when extrapolated to all individuals experiencing mi- graine and aged ≥15 years.	The authors concluded the direct healthcare costs of migraine have not increased significantly over the past decade, and small number of patients with more severe headaches accounted for most healthcare resources devoted to migraine. Prevalence estimates may be of value for budget impact scenarios.

Utilities

Study	Countr y	Study overview	Findings	Relevance for this study
Di Tanna et al 2019 ¹⁴⁰	Global	The study mapped patient-reported outcomes from erenumab clinical studies (episodic mi- graine [NCT02456740 and NCT02483585] and chronic migraine [NCT02066415]) to the EQ-5D as a function of the MSQ and HIT-6 [™] using pub- lished algorithms.	A linear mixed-effects model with REML, a fractional re- sponse model with logit link, a fractional response model with probit link and a beta regression model were used to explain utility values as a function of MMDs. They had similar fit, and mapped utility values for patients treated with erenumab were generally greater than patients treated with placebo with simi- lar MMDs. The beta regression model was the preferred op- tion due to flexibility and previous use to model QALYs.	The study provides models for mapping patient utility values to MMDs. The beta regression model was preferred.
Matza et al 2019 ¹⁴¹	UK	The authors interviewed 400 UK participants (200 general population, 49% female, average age of 43.6 years; and 200 migraine patients, 74.5% female, average age of 45.8 years) using time trade-off interviews. They valued health state vignettes drafted based on literature, medi- cation labels and clinician interviews. Eight health states that were randomly selected from a total of 15 were also included.	Average utilities of health states without aura were 0.79 with daily oral medication, 0.78 with one injection per month, and 0.72 with 31–39 injections once every 3 months. AEs associ- ated with oral medications had the highest disutilities. They in- cluded -0.060 for fatigue and -0.098 for brain fog.	Utilities could be used in cost-utility models.

Other

Study	Countr	Study overview	Findings	Relevance for this study
	У			
Gerth et al 2001 ¹⁴²	Global	The authors estimated productivity losses. They used the MBQ which was self-administered by patients at a screening visit for 3 phase III clini- cal trials of rizatriptan. A total of 2670 persons (54.7% Europe, 16.5% Latin America, 23.1% North America, 5.5% other countries) completed the MBQ.	An average migraine attack frequency of 3.67 per month was reported, with 2.78 doctor visits, 0.53 emergency room visits and 0.06 hospitalisations related to migraine per year. Patients self-reported being only 46% effective while on the job with migraine symptoms.	The study provides average health service usage for this average migraine attack frequency.
Seddik et al 2021 ¹⁴³	Germa ny	The authors simulated the incremental benefits of erenumab against the standard of care in	The study indicated erenumab could lead to a reduction of 166 million migraine days annually and reduce productivity	The DRGs used in Germany could be applicable to the Swiss context. The study
2UZ I 140		Germany. The study included response rates, transition probabilities and discontinuation rates,	losses in the range of 27 billion.	does not report ICERs or cost per patient, so is not included in the main economic study

		and productivity estimates were derived from the erenumab clinical trial program. Five acute treatment combinations against migraine were included, selected in line with evidence-based recommendations. Costs per hospitalisation were derived from the DRG's online tool (B77Z) on reimbursement information. Transition probabilities derived from 4 clinical trials (NCT02456740, NCT02066415, NCT03096834 and NCT02483585).		data extraction.
Williams et al 2001 ¹⁴⁴	UK	The authors developed a decision analytic model for stepped care or a stratified care regimen. A health service payer perspective was adopted, and the time horizon was 1 year. UK NHS costs were used.	Stratified care (which included zolmitriptan as the representa- tive of high-end therapy) was estimated to be cost-effective.	Stratified care could be examined in scenario analysis.

AE = adverse event, CGRP = calcitonin gene-related peptide, DRG = diagnosis-related group, ER = emergency room, EQ-5D = EuroQol-5D, EUR = euro, HCRU = healthcare resource utilisation, HIT-6 = Headache Impact Test, HTA = health technology assessment, ICERs = incremental cost-effectiveness ratios, mAbs = monoclonal antibodies, MBQ = Migraine Background Questionnaire, MMD = monthly migraine days, MSQ = Migraine-Specific Quality of Life Questionnaire 2.1, NHS = National Health Service, PMM = preventive migraine medication, QALY = quality-adjusted life year, QoL = quality of life, REML = restricted maximum likelihood, SD = standard deviation, SF-36 = 36-Item Short Form Health Survey, UK = United Kingdom, USA = United States of America, USD = United States dollar, 95% CI = 95% confidence interval.

Appendix K: Economic evaluation search of HTA agency websites

Table A79 HTA agency relevant study search

Australia	HTA Websites	Search Terms: Erenumab or Fremanezumab or Galcanezumab or Eptinezumab
Adelaide Health Technology Assessment	https://www.adelaide.edu.au/ahta/pubs/	Nil
Australian Safety and Efficacy Register of New Interventional Procedures— Surgical	https://www.surgeons.org/research- audit/research-evaluation-inc-asernips	Nil
Austria		
Austrian Institute for Health Technology Assessment	https://aihta.at/page/homepage/en	Nil
Gesundheit Österreich GmbH	http://www.goeg.at	Nil
Argentina		
Institute for Clinical Effectiveness and Health Policy	http://www.iecs.org.ar	Donato M, Augustovski F, Pichon-Riviere A, García Martí S, Alcaraz A, Bardach A, Ciapponi A. Erenumab en prevención de migraña. Documentos de Evaluación de Tecnologías Sanitarias, Informe de Respuesta Rápida Nº 721, Buenos Aires, Argentina. Junio 2019. ISSN 1668-2793. Disponible en www.iecs.org.ar.
Belgium		
Belgian Health Care Knowledge Centre	http://kce.fgov.be	Nil
Brazil		
National Committee for Technology Incorporation	http://conitec.gov.br/en/	Nil
Agência Nacional de Saúde Suplementar/ National Regulatory Agency for Private Health Insurance and Plans	https://www.gov.br/ans/pt-br	Consultas Públicas cp81 medicamentos RE_209_Erenumabe_Enxaqueca.pdf

Canada				
Institute of Health Economics	http://www.ihe.ca	Nil		
Institut National d'Excellence en Santé et en Services	https://www.inesss.qc.ca/en/home.html	 <u>https://www.inesss.qc.ca/thematiques/medicaments/medicaments-evaluation-aux-fins-dinscription/extrait-davis-au-ministre/ajovy-5368.html</u> <u>https://www.inesss.qc.ca/en/themes/medicaments/drug-products-undergoing-evaluation-and-evaluated/extract-notice-to-the-minister/emgality-5901.html</u> <u>https://www.inesss.qc.ca/fileadmin/doc/INESSS/Inscription_medicaments/Avis_au_ministre/Mars_2021/20210301_AvisMinistre.pdf</u> <u>https://www.inesss.qc.ca/fileadmin/doc/INESSS/Inscription_medicaments/Avis_au_ministre/Mars_2021/20210301_AvisMinistre.pdf</u> 		
The Canadian Agency for Drugs and Technologies in Health (CADTH)	http://www.cadth.ca/	 <u>https://www.cadth.ca/erenumab</u> <u>https://www.cadth.ca/fremanezumab</u> <u>https://www.cadth.ca/galcanezumab</u> <u>https://www.cadth.ca/eptinezumab</u> 		
Ontario Health	https://www.ontariohealth.ca/	Nil		
Colombia				
Instituto de Evaluación Tecnológica en Salud	http://www.iets.org.co	Nil		
Denmark				
Social & Health Services and Labour Market	http://www.defactum.net	Nil		
Finland				
Finnish Coordinating Center for Health Technology Assessment	https://www.ppshp.fi/Tutkimus-ja- opetus/FinCCHTA/Sivut/HTA- julkaisuja.aspx	Nil		
France				
French National Authority for Health (Haute Autorité de Santé;)	http://www.has-sante.fr/	Nil		

Assistance Publique – Hôpitaux de Paris	http://cedit.aphp.fr	Nil
Germany		
Institute for Quality and Efficiency in Health Care	http://www.iqwig.de	 <u>https://www.iqwig.de/download/a18-71_erenumab_extract-of-dossier-assessment_v1-0.pdf</u> <u>https://www.iqwig.de/download/a19-44_fremanezumab_nutzenbewertung-35a-sgb-v_v1-0.pdf</u> <u>https://www.iqwig.de/download/a19-44_fremanezumab_extract-of-dossier-assessment_v1-0.pdf</u> <u>https://www.iqwig.de/download/a19-28_galcanezumab_nutzenbewertung-35a-sgb-v_v1-0.pdf</u>
Federal Joint Committee (Gemeinsamer Bundesausschuss)	https://www.g-ba.de/english/	 <u>https://www.g-ba.de/beschluesse/5066/</u> <u>https://www.g-ba.de/beschluesse/4016/</u> <u>https://www.g-ba.de/beschluesse/3957/</u>
Ireland		
Health Information and Quality Authority	http://www.hiqa.ie	Nil
Italy		
Agenzia Sanitaria e Sociale Regionale	http://www.inahta.org/members/assr/	Nil
HTA Unit in A. Gemelli Teaching Hospital	https://www.policlinicogemelli.it/	Nil
National Agency for Regional Health services	http://www.agenas.it	Nil
Kazakhstan		
Ministry of Public Health of the Republic of Kazakhstan, Republican Centre for Health Development	http://www.rcrz.kz	Nil
Korea		
National Evidence-based healthcare Collaborating Agency	www.neca.re.kr/eng	Nil

Malaysia			
Health Technology Assessment Section, Ministry of Health Malaysia	http://www.moh.gov.my	Nil	
The Netherlands			
The Netherlands Organisation for Health Research and Development	http://www.zonmw.nl	Nil	
Zorginstituut Nederland	https://www.zorginstituutnederland.nl/	Advise in Dutch	
Norway			
The Norwegian Institute of Public Health	http://www.fhi.no/	Nil	
Peru			
Institute of Health Technology Assessment and Research	http://www.essalud.gob.pe/ietsi/	Nil	
Poland			
Agency for Health Technology Assessment and Tariff System	http://www.aotm.gov.pl	Nil	
Republic of China, Taiwan			
Center for Drug Evaluation	http://www.cde.org.tw	Nil	
Russian Federation			
Center for Healthcare Quality Assessment and Control	www.rosmedex.ru	Nil	
Singapore			
Agency for Care Effectiveness	ace-hta.gov.sg	Nil	
Spain			
Agencia de Evaluación de Tecnologias Sanitarias, Instituto de Salud "Carlos III"I / Health Technology Assessment Agency	http://publicaciones.isciii.es/	Nil	

	1	
Agency for Health Quality and Assessment of Catalonia	http://aquas.gencat.cat	Nil
Andalusian HTA Agency	http://www.aetsa.org/	Nil
Basque Office for Health Technology Assessment	http://www.euskadi.eus/web01- a2ikeost/en/	Nil
Galician Agency for Health Technology Assessment	http://acis.sergas.es	Nil
Health Sciences Institute in Aragon	http://www.iacs.es/	Nil
Sweden		
Swedish Council on Technology Assessment in Health Care	http://www.sbu.se/en/	Nil
Switzerland		
Swiss Federal Office of Public Health	http://www.bag.admin.ch/hta	HTA-Protokoll, 29/7/2022
Tunisia		
INEAS – National Authority for Assessment and Accreditation in Healthcare, TUNISIA	http://www.ineas.tn/fr	Nil
United Kingdom	•	
Healthcare Improvement Scotland	http://www.healthcareimprovementscotland .org	Nil
National Institute for Clinical Excellence (NICE)	http://www.nice.org.uk/	Eptinezumab for preventing migraine [ID3803] <u>https://www.nice.org.uk/guidance/indevelopment/gid-ta10677</u> Galcanezumab for preventing migraine [ID1372] <u>https://www.nice.org.uk/guidance/ta659/evidence/committee-papers-pdf-8902011421</u> Fremanezumab for preventing migraine, Technology appraisal guidance [TA764] <u>https://www.nice.org.uk/guidance/ta764/evidence/committee-papers-ta764-pdf-10952875693</u> Erenumab for preventing migraine, Technology appraisal guidance [TA682]

Health Technology Wales National Institute for Health Research United States Agency for Healthcare Research and Quality	http://www.healthtechnology.wales http://www.nets.nihr.ac.uk/programmes/hta https://www.ahrq.gov/research/findings/ind ex.html	https://www.nice.org.uk/guidance/ta682/evidence/appraisal-consultation- committee-papers-pdf-9021642589 https://www.nice.org.uk/guidance/ta682/evidence/final-appraisal-determination- 2-committee-papers-pdf-9021642591 https://www.nice.org.uk/guidance/ta682/evidence/final-appraisal-determination- committee-papers-pdf-9021642590 Nil Nil
Uruguay Health Assessment Division, Ministry of Public Health	http://www.msp.gub.uy	Nil

Abbreviations: CADTH = Canadian Agency for Drugs and Technologies in Health, HTA = health technology assessment, NICE = UK National Institute for Clinical Excellence.

Appendix L: Data extraction template for HTA agency economic studies

Table A80 Data extraction template for HTA agency economic studies

Reviews

Country; Agency	Medicine	Study Overview	Findings	Relevance for this study
Canadian Agency for S Drugs and F Technologies f in Health f (CADTH) (C	Erenumab. ¹⁴⁶ The Sponsor sought a price of CAD532 per 70 mg or 140 mg autoinjector, with annual cost of CAD6,384 per patient.	The Sponsor submitted a model which included a base case intervention for adult patients who have at least 4 migraine days per month and reim- bursement request analysis for adult patients who have at least 8 migraine days per month and who have previously failed at least 2 migraine preven- tive therapies. The comparator was best supportive care, which included treatment with acute medications and medical management involving GP and emergency department visits. Both populations were stratified for epi- sodic migraine and chronic migraine sufferers, with episodic migraine being less than 15 monthly headache days, of which four to 15 are MMDs, and for chronic migraine sufferers, 15 or more monthly headache days, of which eight or more are MMDs.	The base-case analysis generated an ICUR of CAD89,773 for erenumab 70 mg verse standard of care and CAD84,204 for erenumab 140 mg. CADTH revised the base case, in the episodic migraine population, and 140 mg had an ICUR of CAD153,635, whereas 70 mg was extendedly dominated. A price reduction of 64% was required for 140 mg in the base analysis to attain a WTP threshold of CAD50,000 per QALY.	The model analysis needs to consider the trial period (24 weeks for STRIVE; and 12 weeks for LIBERTY and Tepper et al 2017) and longer- term efficacy. ICURs will be presented for a trial (12 or 24 weeks), time horizon as part of sensitivity analyses.
		The base case analysis assumed 46% and 54% of patients suffered epi- sodic and chronic migraine (derived from the CHORD study) and 68% and 32% had episodic and chronic migraine in the reimbursement request anal- ysis. The model starting population was 82.8% female, and had a mean age of 42 years, which was derived from the STRIVE clinical trial. In addi- tion to standard of care, erenumab 140 mg was compared with onabotuli- numtoxinA in a scenario analysis for chronic migraine patients.	CADTH indicated the Sponsors analysis had several limitations. These included, all relevant comparators were not cov- ered, the model did not reflect the natural history of migraine (e.g., improvements or worsening in the natural course) and impact of migraine severity was not con- sidered. Trial data was noted as being	Efficacy should be based on the most up-to-date data, such as discontinuation rates from the open label extension Study 178. Scenarios will be included for differing natural histories.
		Costs were calculated using the numbers of MMDs and analyses took the perspective of the Canadian publicly funded health care payer over 5-years. A discount rate of 1.5% per annum was included. A linear regression was used to estimate acute medications (triptans and analgesics) costs based on numbers of MMDs. No AE costs were estimated due to assumed similar safety on each arm of the model. Utility values were also a function of MMDs, derived from Migraine-Specific Quality of Life Questionnaire (MSQ) data collected from Tepper et al 2017 and STRIVE mapped to	limited to 24 weeks for STRIVE; and 12 weeks for LIBERTY and Tepper et al 2017. These lengths of follow-up were highlighted as limiting confidence in longer-term projections.	Care needs to be taken if trial data is pooled. CADTH noted trial populations were not homogenous and no adjustment was made to account for differences in

Country; Agency	Medicine	Study Overview	Findings	Relevance for this study
		EQ-5D. Like the published Mahon et al 2021 ¹¹⁴ model, the Sponsor model included a decision tree for patient response to treatment during a 12-week assess- ment, then a Markov model to assess long-term treatment costs and bene- fits. Erenumab versus standard of care efficacy was derived from clinical trials for chronic migraine (Tepper et al 2017) and episodic migraine (STRIVE and LIBERTY) patients. Mortality was based on general popula- tion mortality which was similar for both arms of the model.		sample sizes or baseline characteristics.
	Fremanezumab. ¹⁴⁷ The Sponsor submitted price was CAD585, or an annual cost of CAD7,020 per patient.	The Sponsor undertook a cost-utility analysis to assess fremanezumab for patients with episodic and chronic migraine patients stratified by the number of prior preventive migraine therapies. The base-case analyses compared fremanezumab with erenumab, galcanezumab, and standard of care. standard of care included acute migraine-specific and nonspecific treatments. OnabotulinumtoxinA was included as a comparator for chronic migraine patients and three oral preventive migraine therapies (amitripty-line, propranolol, topiramate) were considered as comparators in scenario analyses. Baseline MMDs for chronic migraine were 17.3 and 9.3 migraine days for EM. A baseline prevalence of 91% and 9% for episodic and chronic migraine was assumed using the CaMEO study in the USA.	The sponsor estimated ICUR for episodic migraine (2 prior preventive therapies) was CAD138,122 per QALY gained com- pared with standard of care, and chronic migraine (≥ 2 prior preventive therapies) CAD102,184 per QALY gained. Several limitations were identified by CADTH in the submission which included there was no head-to-head evidence comparing fremanezumab with other preventive mi- graine therapies. The sponsor used a network meta-analysis comparing frema-	The clinical effectiveness of fremanezumab relative to other currently reimbursed migraine preventive therapies is uncertain, due to a lack of direct comparative evidence. This issue may be evident in our economic modelling, dependant on the clinical evidence.
		The model had a 10-year horizon and took the perspective of the public health care payer. A discount rate of 1.5% per year was used and the model cycle length was 28 days. A 3-state Markov model was developed which included preventive migraine treatments (On-Treatment, Off-Treatment) or death. Patients started in the On-Treatment state, and a proportion of patients discontinued each cycle. Patients in the Off-Treatment state received standard of care. The rate of discontinuation for fremanezumab and galcanezumab was assumed to be equal to that for erenumab.	nezumab, erenumab, galcanezumab, and onabotulinumtoxinA . Reductions in migraine severity and/or frequency were not considered, and patients who discon- tinue fremanezumab did not avail other preventive migraine treatments. Long term efficacy was not supported by evi- dence. The clinical effects of frema- nezumab over a maximum follow-up of	The effects of treatment on migraine severity and adverse events related to treatment were not considered. They will be included in sensitivity analyses.
		Apart from discontinuation, the key measure of efficacy was the reduction in the number of MMDs relative to standard of care. Utility values were de- rived from the Migraine-Specific Quality of Life (MSQ) questionnaire esti- mates from the FOCUS trial, mapped to the EuroQol 5-Dimensions (EQ- 5D). Health care resource utilization was based on the number of MMDs.	12-week trials were sustained for 10 years. Health care resource use was based on utilization data from the USA and may not be applicable to migraine management in Canada.	As above, ICURS will be presented for a range of time horizons as part of sensitivity analyses (12- week trial, to lifetime).

Country; Agency	Medicine	Study Overview	Findings	Relevance for this study
	Galcanezumab. ¹⁴⁸ The Sponsor sought CAD623 per 120 mg, or annual cost of CAD8,099 per patient in the first year, and CAD7,476 per patient thereafter.	The Sponsor submitted a reimbursement request for prevention of mi- graine in adults with at least 4 migraine days per month and who had failed at least 2 prophylactic migraine medications. The model compared prophy- lactic galcanezumab to standard of care among episodic and chronic mi- graine patients standard of care efficacy was based on the placebo group of the CONQUER trial and involved acute medication (triptans, nonsteroi- dal anti-inflammatory drugs, and acetaminophen or acetaminophen combi- nations, with some restrictions on opioids and barbiturates). The analyses used a 20-year time horizon and took a publicly funded health care payer perspective. A discount rate of 1.5% per year, and model cycle length of 30 days were employed. The Markov model had 4 health states (on treatment, off treatment due to nonresponse, off treatment due to AEs, and death). Patients started with medicines initiation and were assessed for response after 3 months. Re- sponders were specified as having a 50% or greater reduction in MHDs from baseline for chronic migraine patients, or a 30% or greater reduction from baseline for chronic migraine patients. Death could occur in any health state, and data sourced from Canadian statistics was used for gen- eral population mortality rates. Utility values were also determined by MHDs and derived from MSQ estimates reported in the CONQUER trial. They were mapped to the EQ-5D. Utilities were also estimated by treat- ment group. Adverse events were not explicitly modelled. Resource use was also driven by MHDs per cycle.	Galcanezumab had an estimated ICUR of CAD39,010 per QALY gained among episodic migraine and 99.7% of iterations were cost-effective at a willingness-to- pay threshold of CAD50,000 per QALY. An ICUR of CAD16,594 per QALY gained was estimated for chronic mi- graine patients. CADTH noted the modelled population was only a subset of the indicated popu- lation in Canada. Other limitations in- cluded no head-to-head evidence being available that compared galcanezumab to active preventive therapies. Like other submissions, patients who discontinue galcanezumab or stop responding to standard of care were assumed to re- ceive standard of care (acute migraine treatment) only, with no additional pre- ventive therapy. These patients may re- ceive another anti-CGRP, onabotuli- numtoxinA, or oral treatment (e.g., pro- pranolol, amitriptyline, or topiramate). Responders after 12 weeks of treatment were assumed to maintain their improved frequency of MHDs for the remainder of their time on treatment, up to the analysis time horizon. In contrast, standard of care patients who responded were as- sumed to sustain baseline for a year. The use of treatment-specific utilities was considered inappropriate as differences	No treatment effect will be included in health state utilities. Sensitivity analysis will be conducted around utility values and discussion of migraine severity will be included. The applicability of United States health utilisation data to the Swiss context will be discussed.

Country; Agency	Medicine	Study Overview	Findings	Relevance for this study
			in clinical effects and costs should be re- flected in the model health states. Mi- graine severity was not captured in the model. Health care resource utilisation was taken from United States data in Lip- ton. This may not reflect Canadian migraine management.	
NICE	Erenumab. ¹⁴⁹ Erenumab 70 mg or 140 mg administered every 4 weeks, subcutaneously.	The model submitted in the UK was similar to that assessed by CADTH. CADTH noted the structure included a decision tree for the 12-week as- sessment period (classifying patients as responders or non-responders), then Markov model with 12-week cycle lengths. Erenumab was compared to standard of care in EM, and onabotulinumtoxinA and standard of care in CM. Resource use was driven by MMDs and no AE costs were included. The treatment effect remained stable A while on treatment. Differences be- tween the UK and Canadian models included the population which as- sumed adults with ≥ 3 prior failed treatments, and analyses were con- ducted for the whole migraine population, along with episodic and chronic migraine sub-populations. A time horizon of 10 years was used and 50:50 blended dose of erenumab 70 mg and erenumab 140 mg used for the in- tervention. Results of the ARISE trial, Tepper et al 2017, and STRIVE were used to map MSQ to EQ-5D using the Gillard algorithm. No AE disutility was applied. The NICE review recommended erenumab for preventing mi- graine in adults who experience 4 or more migraine days per month and at least 3 preventive drug treatments have failed.	The Sponsor base case for the whole population (episodic and chronic mi- graine) had an ICUR GBP22,309 per QALY gained verse standard of care. Some of the NICE review team noted lim- itations included that a sequential rather than pairwise analysis should be pro- vided, episodic and chronic migraine should be considered separately to align with trials and ensure all with \geq 4 MMDs were covered, two erenumab doses should be considered separately as no patient would be provided a blended dose. The 10-year time horizon was con- sidered arbitrary, and not representative of a patient lifetime. Other concerns also raised by CADTH included that natural disease progression was not captured, and there was uncertain long-term effi- cacy.	Similar issues to that raised by CADTH for erenumab.
	Fremanezumab. ¹⁵⁰	The analysis of cost-effectiveness included episodic and chronic migraine analyses compared to standard of care. The model included a decision- tree (covering a 3-month assessment period), then Markov model. Transi- tions were determined by a statistical distribution, rather than use of proba- bility matrices. The model had a cycle length of four weeks and a 10-year time horizon. A National Health Service and Personal Social Services per- spective was taken and discounting at 3.5% per annum.	Several limitations were noted by the re- view group. They thought all patients would not self-administer and included a scenario analysis in which 10% of pa- tients received nursing support. ICURs only reduced marginally. The review group highlighted the time	The review group applied a linear waning of effect over 5 years for positive stoppers, coupled with treatment re-initiation after a loss of half the effect. A waning effect scenario will be included

Country; Agency	Medicine	Study Overview	Findings	Relevance for this study
		The review team noted negative and positive discontinuation was included in the model, Negative discontinuing patients transitioned to standard of care monthly migraine day frequency, and alive positive discontinuers sus- tained prophylactic effect indefinitely. Response at initial assessment was derived from FOCUS trial data. The effectiveness of standard of care was based on the placebo control arm of the FOCUS trial. The review team indicated data from the disease-specific MSQ question- naire were preferred by the Sponsor to EQ-5D data because it captured patient HRQoL over four weeks rather than just the day of clinic visit. A mapping technique was used to transform pooled episodic and chronic mi- graine scores to EQ-5D-3L scale utility values. NICE recommended frema- nezumab for preventing migraine in adults who experience 4 or more mi- graine days per month and at least 3 preventative drug treatments have failed.	 horizon of the base case analyses was ten years. The basis for this time frame was that >99% of patients were estimated to have discontinued treatment by this time given a positive stop rate of 20% annually. The review group concluded that "on balance a 10-year time horizon is reasonable given the competing requirements of capturing long-term treatment effect and avoiding increasing uncertainty as extrapolation lengthens." Long term treatment effect was not based on randomised controlled evidence. Observations from the 1 year HALO open label extension were used to support assumptions of an unchanging rate of prophylaxis discontinuation; and sustained full effect for patients on treatment as well as for positive discontinuers. In terms of utilities, it was noted that HRQoL data was collected from the full FOCUS trial population (of people who had used ≥2 prior prophylactic therapies, not the ≥3 prior model population. The review group indicated that the Sponsors preference for MSQ derived data over directly gathered EQ-5D data was reasonable provide the patients on the store the indicated that the Sponsors preference for MSQ derived data over directly gathered EQ-5D data was reasonable provide the patients on the store the provide the provide	in our model.
			able given the limitation so of the EQ-5D design, requiring mapping to the EQ-5D scale. The review group indicated rates were based on a general migraine population,	

Country; Agency	Medicine	Study Overview	Findings	Relevance for this study
			with no specification of previous prophy- lactic history, therefore it is not known if rates are representative of the ≥3 prior prophylactic treatment population.	
	<u>Galcanezumab.</u> ¹⁵¹	The Sponsor adopted the same modelling approach to that submitted for erenumab and fremanezumab. Analyses were conducted for episodic and chronic migraine patients, where the intervention was compared to stand- ard of care, along with onabotulinumtoxinA for chronic migraine patients. The number of migraine headaches per 30-day model cycle drove utility (30 health states), along with costs weighted by proportions of patients in each state. The distribution of patients (MHD, 0 to 30 per month) was esti- mated by fitting a parametric distribution to trial data Goodness of fit anal- yses was used to derive the best model. A negative binomial distribution was used for episodic migraine patients using the EVOLVE-1 and EVOLVE-2 trials and beta binomial distribution for chronic migraine pa- tients from the REGAIN trial.	The review team estimated and ICUR for galcanezumab was between GBP20k and GBP30k per QALY gained compared with standard of care in episodic migraine and GBP20k and GBP30k per QALY gained compared with onabotulinumtox- inA for CM. Several issues were identi- fied by the review team. They included (p.425): a lifetime model time horizon (45 years) is preferred to 25 years, high fre- quency episodic migraine is not consid- ered clinically distinct from episodic or chronic migraine, galcanezumab should be considered in treatment sequences before and after onabotulinumtoxinA, re- sults from the indirect treatment compari- son should be used for the different re- sponse rates between galcanezumab and onabotulinumtoxinA, it is appropriate to assume consistent discontinuation rates and waning periods for galcane- zumab and onabotulinumtoxinA, alterna- tive source should be used to generate HRQoL, and administration costs should be applied for 10% of people receiving galcanezumab. As in other reviews listed above, the re- view team were concerned about the ef- fects of treatment at 90 days being ex- trapolated across the time horizon of the	The review team noted the model focused on migraine frequency rather than migraine severity and didn't consider natural history of migraine. Sensitivity analyses will be included around different utility values in our economic model to account for severity and response rates will be varied to include waning. A 25-year time horizon was thought by the Sponsor to be sufficient. They noted prevalence of migraine reduces significantly with age and particularly after the menopause. The review group considered 25-year time horizon reasonable for the modelled cohort of 46 years old. The review team also noted the committee preferences in the appraisal of erenumab and fremanezumab for a

Country; Agency	Medicine	Study Overview	Findings	Relevance for this study
			model. The Sponsor justified these esti- mates using long-term data from the RE- GAIN and CGAJ studies. The review group noted that these studies provide only limited follow up (maximum 1 year) and that neither were comparative.	lifetime time horizon. A range of time horizons will be included in our model.
			The review group indicated utility values were derived from the whole population in the CONQUER trial and not just those who had failed \geq 3 previous treatments.	

Abbreviations

AE = adverse events, **CADTH** = Canadian Agency for Drugs and Technologies in Health, **CM** = chronic migraine, **EM** = episodic migraine, **EQ-5D** = EuroQol-5D, **CAD** = Canadian dollar, **CGRP** = calcitonin generelated peptide, **GBP** = British pound, **HRQoL** = EuroQol-5D health related quality of life, **ICUR** = incremental cost utility ratio, **MSQ** = Migraine-Specific Quality of Life Questionnaire, **MHDs** = monthly headache days, **MMDs** = monthly migraine days, **NICE** = UK, National Institute for Clinical Excellence, **QALY** = quality-adjusted life year, **UK** = United Kingdom, **USA** = United States of America, **WTP** = willingness to pay.

Appendix M: Ongoing clinical trials

Appendix N includes a table of ongoing clinical trials (i.e. recruiting, not yet recruiting, active not recruiting, enrolling by invitation) that meet the inclusion criteria for this assessment (**Table A81**). The aim of this table is to outline any upcoming evidence, to determine if new evidence that may affect the results of this assessment is likely to be published in the near future.

Trial registry ID; Country	Indication; Sample size (n)	Intervention	Comparator	Primary outcomes	Recruitment status; Expected completion date
ClinicalTrials.gov		•	•		
NCT03867201	Chronic migraine	Erenumab	Placebo	Change in MMDs	Active, not recruiting
Multiple countries	n = 577				June 28, 2024
NCT03927144	Episodic migraine	Erenumab	Oral prophylactic	Proportion of subjects achieving at least 50%	Active, not recruiting
Multiple countries	n = 621		(type NR)	reduction from baseline in MMDs at month 12	October 7, 2022
NCT03963232	Episodic migraine	Galcanezumab	Placebo	Mean change from baseline in number of	Active, not recruiting
Multiple countries	n = 486			monthly migraine headache days	February 28, 2022
NCT03971071	Chronic migraine	Erenumab (70 mg)	Placebo	Change from baseline in the number of	Recruiting
Multiple countries	n = 687	Erenumab (140 mg)		MMDs	June 29, 2023
NCT04041284	Migraine (type NR) and major	Fremanezumab	Placebo	Mean change in MMDs	Recruiting
Multiple countries	depressive disorder				July 23, 2022
	n = 340				
NCT04084314	Episodic migraine	Erenumab (70 mg)	NA	Long term safety (adverse events)	Active, not recruiting
Germany	n = 699	Erenumab (140 mg)			March 13, 2023
NCT04252742	Episodic migraine	Erenumab	Placebo	Change from baseline in moderate headache pain intensity	Recruiting

 Table A81
 Ongoing clinical trials fitting the inclusion criteria

Trial registry ID; Country	Indication; Sample size (n)	Intervention	Comparator	Primary outcomes	Recruitment status; Expected completion date
Multiple countries	n = 576			measured on the NRS scale	July 21, 2024
NCT04361721	Chronic migraine	Erenumab	NA	Spinal sensitisation*	Recruiting
Italy	n = 40				June 30, 2021
NCT04418765 Multiple countries	Episodic or chronic migraine	Eptinezumab (100 mg) Eptinezumab (300 mg)	Placebo	Change from baseline in the number of MMDs	Active, not recruiting September
	n = 892	(******3)			2, 2022
NCT04461795	Episodic or chronic migraine	Fremanezumab (225 mg)	NA	Change in MIBS-4	Recruiting March 9, 2022
	n = 40				
NCT04465357	Migraine (type NR)	Erenumab (140 mg/ml)	NA	Change in MFIQ	Recruiting
USA	n = 54				December 31, 2021
NCT04603976 Denmark	Migraine (type NR) n = 1000	Erenumab (70 mg Erenumab (140 mg)	NA	Headache diary recording migraine- related data	Recruiting October 2022
NCT04628429	Episodic or chronic	Erenumab Galcanezumab	NA	Change from day 0 CAD at 5 months	Recruiting
Austria	migraine n = 120	Fremanezumab		Change from days 1- 31 CAD at 5 months [†]	December 31, 2022
NCT04674020	Migraine (type NR)	Erenumab	NA	Headache diary recording migraine	Recruiting
Denmark	n = 250			related data	July 2025
NCT04693533	Episodic or chronic	Fremanezumab	NA	Change in number of migraine days per	Not yet recruiting
USA	migraine n = 100			month pre and post treatment Sleep quality pre and post treatment	December 2022
NCT04772742	Migraine (type NR)	Eptinezumab (100 mg)	Placebo	Change from baseline in the number of MMDs	Active, not recruiting
Multiple countries	n = 182				June 22, 2022
NCT04803513	Episodic or chronic migraine	Galcanezumab	NA	Change from baseline in the number of MMDs	Recruiting

Trial registry ID; Country	Indication; Sample size (n)	Intervention	Comparator	Primary outcomes	Recruitment status; Expected completion date
Italy	n = 300				August 31, 2022
NCT04825678 USA	Migraine (type NR) n = 322	Erenumab	NA	Change from baseline in the TSQM overall satisfaction scale score	Recruiting December 9, 2022
NCT04921384 Multiple countries	Chronic migraine n = 513	Eptinezumab (300 mg) Eptinezumab (100 mg)	Placebo	Change from baseline in the number of MMDs	Recruiting July 31, 2023
NCT05064371 Japan	Chronic migraine n = 100	Eptinezumab	NA	Number of participants with adverse events	Enrolling by invitation June 10, 2024
NCT05127486 USA	Episodic migraine n = 700	Galcanezumab	Placebo Rimegepant	Mean monthly percentage of participants with a 50% response rate defined as ≥50% reduction from baseline in monthly migraine headache days	Recruiting December 30, 2022
NCT05232942 Spain	Episodic or chronic migraine n = 200	Discontinuation of Galcanezumab, Fremanezumab or Eptinezumab	NA	The needed number of months elapsed until the patient has a number of headache days per month that equals the situation at the moment of the monoclonal antibody onset or the need of other prophylactic medication	Not yet recruiting August 15, 2024
EU Clinical Trials F	Register	•		·	
2019-004497-25 Multiple countries	Episodic or chronic migraine n = 840	Eptinezumab	Placebo	Change from baseline in the number of MMDs	Ongoing NR
2019-001989-15 Multiple countries	Migraine (type NR) n = 340	Fremanezumab	Placebo	Change from baseline in the number of MMDs	Ongoing NR

Trial registry ID; Country	Indication; Sample size (n)	Intervention	Comparator	Primary outcomes	Recruitment status; Expected completion date
2019-003646-33 Multiple countries	Episodic migraine n = 576	Erenumab	Placebo	Change from baseline in mean monthly hours of at least moderate headache pain intensity over months 1, 2 and 3	Ongoing NR
2018-001228-20 Multiple countries	Episodic migraine n = 600	Erenumab	Oral prophylactic (beta blockers, calcium antagonists, anticonvulsants, antidepressants)	Proportion of subjects who complete initially assigned treatment and achieve at least 50% reduction from baseline in monthly migraine days at month 12	Ongoing NR
2018-003342-16 Multiple countries	Chronic migraine n = 687	Erenumab	Placebo	Absence of MOH at month 6 as defined by mean monthly AHMD < 10 days over months 4, 5, and 6 (week 12 through 24) OR mean monthly headache days < 14 days over months 4, 5, and 6 (week 12 through 24)	Ongoing NR

Abbreviations

AHMD = acute headache medication days, CAD = Cardiovagal Autonomic Dysfunction, ID = identification, MFIQ = Migraine Functional Impact Questionnaire, MIBS-4 = Migraine Interictal Burden Scale, MMDs = monthly migraine days, MOH = medication overuse headache, n = estimated/actual enrolment number, NA = not applicable, NR = not reported, NRS = Numerical Rating Scale, TSQM = Treatment Satisfaction Questionnaire for Medication, USA = United States of America. Notes

*Secondary outcomes of relevance to this report include migraine disability index, headache impact (HIT-6), SF-36, and migraine-specific quality-of-life questionnaire (MSQ).

[†]Secondary outcomes of relevance to this report include The Headache Impact Questionnaire, the Migraine Disability Assessment Scale (MIDAS) and the Non-Headache Day Impact Questionnaire (Non-HIQ).

Appendix N: Clinical practice position statements and guidelines

Author, Country, Date	Recommendation (Strength of Recommendation)
Guidelines	
British Association for the Study of Headache ¹⁵² , UK, 2019	 Preventative treatment initiation is recommended when: Patients have 4 or more migraine days per month, as this frequency is associated with significant disability Due to lack of comparative studies, choice of preventative medicine depends primarily on side effect profile and coexisting comorbidities Preventative medications should be titrated slowly to effective and maximum tolerable dosage and continued for 6–8 weeks to adequately measure effect Gradual discontinuation of preventative medication should be considered after 6–12 months
	Guidelines list the following CGRP antagonists for prevention of episodic and chronic migraine and their dosages, with maximum dose as per licensed indication: - Erenumab 70–140 mg monthly - Fremanezumab 225 mg monthly, 675 mg threemonthly - Galcanezumab 120–240 mg monthly (All recommendations are considered to have class A evidence ^a and have been recommended in two or more of the following guidelines: NICE, SIGN, AHS & EFNS)
European Headache Federation, Europe, 2022 Sacco et al 2021 ¹⁵³	 In individuals with episodic migraine, we recommend eptinezumab, erenumab, fremanezumab and galcanezumab as preventive treatment (moderate to high QoE – strong recommendation)^b In individuals with chronic migraine, we recommend eptinezumab, erenumab, fremanezumab and galcanezumab as preventive treatment (moderate to high QoE – strong recommendation)^b In individuals with episodic or chronic migraine we recommend erenumab over topiramate as preventive treatment (low QoE – strong recommendation)^b
European Headache Federation, Europe, 2019	Episodic migraine prevention: Eptinezumab 1000 mg quarterly – suggested (low QoE – weak recommendation) ^b Erenumab 70 mg monthly – recommended (high QoE – strong recommendation) ^b

Table A82 Summary of clinical guidelines and recommendations regarding CGRP antagonists for the prevention of migraine

	Erenumab 140 mg monthly – recommended (medium QoE – strong recommendation) ^b
Sacco et al 2019 ¹⁵⁴	Fremanezumab 225 mg monthly – recommended (high QoE – strong recommendation) ^b
	Fremanezumab 675 mg quarterly – recommended (medium QoE – strong recommendation) ^b
	Galcanezumab 240 mg loading dose + 120 mg monthly – recommended (medium QoE – strong recommendation) ^b
	Galcanezumab 240 mg monthly – recommended (medium QoE – strong recommendation) ^b
	Chronic migraine prevention:
	Erenumab 70 mg monthly – recommended (medium QoE – strong recommendation) ^b
	Erenumab 140 mg monthly – recommended (medium QoE – strong recommendation) ^b
	Fremanezumab 675 mg quarterly – recommended (medium QoE – strong recommendation) ^b
	Fremanezumab 675 mg loading dose + 225 mg monthly – recommended (high QoE – strong recommendation) ^b
	Galcanezumab 240 mg loading dose + 120 mg monthly – recommended (medium QoE – strong recommendation) ^b
	Galcanezumab 240 mg monthly – recommended (medium QoE – strong recommendation) ^b
French Headache	Recommendations regarding CGRP antagonists:
Society, France,	 Erenumab (LoE for efficacy = high in episodic and chronic migraine, Strength of recommendation = strong^c in episodic and chronic migraine)
2021	 Eptinezumab (LoE for efficacy = high in episodic and chronic migraine, Strength of recommendation = strong^c in episodic and chronic migraine)
Ducros et al	 Fremanezumab (LoE for efficacy = high in episodic and chronic migraine, Strength of recommendation = strong^c in episodic and chronic migraine)
2021 ¹⁵⁵	• Galcanezumab (LoE for efficacy = high in episodic and chronic migraine, Strength of recommendation = strong ^c in episodic and chronic migraine)
	Recommendations regarding switching prophylaxis in episodic migraine:
	 After failure of at least two prophylactic treatments in patients with at least eight monthly migraine days, prescribe a CGRP antagonist selected among erenumab, fremanezumab and galcanezumab, based on the patient's preferences (Strength of recommendation: strongc)
	Recommendations regarding switching prophylaxis in chronic migraine:
	 After failure of at least two oral treatments including topiramate in chronic migraine, prescribe a treatment with onabotulinumtoxinA or a CGRP antagonist selected among erenumab, fremanezumab and galcanezumab, based on the patient's preferences (Strength of recommendation: strong^c)
	Recommendations regarding prophylaxis of resistant or refractory migraine
	 After failure of CGRP antagonist in a patient with refractory episodic migraine, consider switching to another CGRP antagonist, with or without combination with an oral prophylactic medication (Strength of recommendation: moderate^d)
	• After failure of a CGRP antagonist in a patient with chronic migraine, consider switching to another CGRP antagonist, or to treatment with onabotulinumtoxinA, both with or without combination with an oral treatment (Strength of recommendation: moderate ^d)
German Society for Neurology and German Migraine	- CGRP antagonists (eptinezumab, fremanezumab, galcanezumab and erenumab) are superior to placebo for preventative treatment of episodic AND chronic migraine

and Headache Society, Germany, 2019 ¹⁵⁶	- Approval exists for the treatment of migraine with at least 4 migraine days/month. According to the decision of the Federal Joint Committee, a prescription for patients with <i>episodic migraine</i> is possible if at least 5 substances from the 4 available, approved medicinal pharmacological groups such as beta-blockers (metoprolol or propranolol), flunarizine, topiramate, valproic acid or amitriptyline were not effective, well tolerated or if there are contraindications to taking them. For <i>chronic migraine</i> , it is recommended patients have not responded to onabotulinumtoxinA
	- In the case of episodic and chronic migraine, therapeutic success is defined as a reduction in the average monthly headache days by 50% or more compared to prior treatment over a period of at least 3 months (diary documentation is recommended). OR significant improvement in validated, migraine-specific, patient-related outcome measures as follows: 30% reduction in MIDAS score when baseline score was > 20 or 5-point reduction in HIT-6 score
	- Therapy should initially last for 3 months. If there is no satisfactory therapy effect, the therapy is terminated. If the therapy is effective, a withdrawal attempt should be made after 6–9 months to check whether the therapy is still necessary
	 CGRP antagonists should not be used in pregnant women or during lactation. They should not be used in women who do not use contraception or do not use it adequately As a precaution, CGRP antagonists should not be used in patients with coronary heart disease, ischemic stroke, subarachnoid haemorrhage, or peripheral arterial disease Until further notice, CGRP antagonists should not be used in patients with inflammatory bowel disease, COPD, pulmonary hypertension, Raynaud's disease, wound healing disorders or transplant recipients. There is no information for children and adolescents on the tolerability and safety of CGRP antagonists. (Strength of recommendations: NR)
Polish Headache	Indication for treatment with CGRP antagonists developed by the American Academy of Neurology:
Society, Poland,	1. At least four days with migraine with or without aura per month.
2021	 Intolerance or inadequate response to at least a 6-week preventative treatment of at least two of the following:
	a. Topiramate, valproic acid
Stępień et al	b. Propranolol, metoprolol, timolol, atenolol, nadolol
2021 ¹⁵⁷	c. Amitriptyline
	d. Venlafaxine, duloxetine
	e. Other Level A or B drugs
	1. At least moderate disability resulting from pain measured with the MIDAS (> 11) and HIT-6 (> 50)
	Dosage and route of administration:
	Erenumab
	Indication: episodic and chronic migraine
	Dosage and route of administration: 140 mg or 70 mg per month subcutaneously once per month.
	Eptinezumab
	Indication: chronic migraine
	Dosage and route of administration: 300 mg or 100 mg per month intravenously once per month
	Fremanezumab
	Indication: episodic and chronic migraine

	Dosage and route of administration: 225 mg subcutaneously once per month or 675 mg once every three months subcutaneously
	Galcanezumab
	Indication: episodic or chronic migraine
	Dosage and route of administration: 120 mg or 240 mg per months subcutaneously once per month
	Treatment efficacy and continuation of treatment:
	Treatment efficacy should be assessed and the decision about the continuation of treatment made 3-6 months after the first administration of CGRP antagonists. Treatment is effective if at least one of the following is achieved:
	1. A reduction in monthly headache days of 50% relative to the pre-treatment month (analysis based on the patient's diary is recommended but not required).
	2. Functional improvement of the patient assessed as a MIDAS score of at least 5 points, with a baseline score ranging from 11 to 20.
	 A reduction in MIDAS score of 30% for patients achieving values close to 20 at baseline or a functional improvement assessed using other sources (e.g. MPFID, HIT-6, or improvement documented in the patient's diary.
	(Strength of recommendations: NR)
Portuguese Headache Society,	Levels of evidence for CGRP antagonists for migraine prophylaxis: Erenumab, fremanezumab, galcanezumab and eptinezumab (Level of evidence: A ^e)
Portugal, 2021	Episodic Migraines
	Recommendations for patient selection:
Parreira et al 2021 ¹⁵⁸	 These treatments are not first line, being indicated for the preventative treatment of episodic migraine in situations of failure (after administration at an adequate dose and time) or in the presence of adverse effects, intolerance or contraindication to other available oral preventives (Grade of recommendation: I^f).
	 The SPC recommends that CGRP antagonists are used in the preventive therapy of patients with episodic migraine, with and without aura, who have more than 8 attacks per month or between 4–8 attacks per month if associated with disability (assessed by simples measures of impact), and have not had an adequate dose and time response (minimum 8 weeks and ideally 12 weeks) and/or have adverse effects, intolerance or contraindication to at least 4 previous oral preventive drugs (Grade of recommendation: I^f).
	Recommendations for maintenance and interruption:
	• The SPC recommends that at the end of the third month of treatment, the response is evaluated. If the treatment is effective it should be maintained, if there is no response it should be stopped (Grade of recommendation: If)
	• While there is no real-life evidence on the indicated duration of treatments, the SPC recommends discontinuing treatment after 6 to 12 months of sustained benefit (> 30% reduction in seizure frequency) or improvement in parameters considered relevant to the patient (Grade of recommendation: NR).
	Chronic Migraines
	Recommendation for patient selection:
	• SPC recommends that prescription be carried out by a tertiary centre by clinical experts following failure in adequate dose and time (or adverse effects, intolerance or contraindication) to at least 3 preventative drugs (preferably including topiramate and onabotulinumtoxinA). (Grade of recommendation: NR).
	Recommendations for maintenance and interruption:

	• It is recommended that patients comply with at least 3 monthly doses to make a decision as to whether or not they are responders (Grade of recommendation: If)
	 In cases of quarterly administration, it is recommended that the response be evaluated 3 months following the first injection. If there is no response, it is lawful to suspend the medication. If there is an answer, which the patient values, even if only subjective and partial, the situation should be reassessed after another 3 or 4 months (Grade of recommendation: NR).
	• SPC recommends interruption of treatment at the end of 6 to 12 months of sustained benefit (> 30% reduction in seizure frequency) or improvement in parameters considered relevant to the patient (Grade of recommendation: NR)
Swiss Headache Society ¹⁵⁹ , Switzerland, 2019	When to initiate preventative treatment: - More than 3 attacks per month (> 5 days) - Intense or long-lasting attacks - Prolonged or frequent aura - Contraindications to or poorly tolerated acute treatments - Presence or risk of headaches on drug abuse - Considerably reduced QoL - Patient choice CGRP antagonist recommended dosage regime: - Erenumab 70–140 mg - Fremanezumab 225–675 mg - Galcanezumab 120 mg Beneficial effect should be assessed after 8 weeks of treatment and if observed treatment should continue for 6–12 months.
	(Strength of recommendations: NR)
Doctorovich et al ¹⁶⁰ , Argentina, 2020	 General recommendations: In migraine patients without aura, preventative treatment is recommended in patients who have > 6 attacks per month during the last 3 months, regardless of the intensity of the attacks. In migraine patients without aura, preventative treatment is recommended in patients who have > 3 attacks per month during the last 3 months, if the episodes cause moderate-severe disability. In migraine patients with aura, preventative treatment is recommended in patients who experience on or more seizures per month during the last 3 months, regardless of the
	 intensity of the episode. Monotherapy is recommended to start migraine prevention, with increasing dose to evaluate treatment response. Recommended preventative treatment failure definition: lack of efficacy if reduction in migraine episodes is < 50% with an adequate dose and a minimum treatment duration of 3 months OR due to adverse events requiring suspension (by the patient or professional) due to the occurrence of intolerable signs and symptoms coinciding with the start of treatment and that improve on discontinuation. CGRP antagonists are not recommended in pregnant or lactating women.

	- Once prescribed, CGRP antagonists should be used for at least 3 months as indicated to assess treatment response.
	- Follow-up of patients using CGRP antagonists should equally evaluate effectiveness, safety and quality of life.
	- Follow-up must be carried out by a professional experienced in treating migraine.
	- This professional is also responsible for reporting adverse events thought to be associated with CGRP antagonist use or their lack of effectiveness, to the competent regulatory body.
	Population: episodic migraine - Use of CGRP antagonists shown to be effective and safe as preventative medication for frequent episodic migraine. - CGRP antagonists are indicated for all patients with frequent episodic migraine who have failed two or more previous treatments. - Use of CGRP antagonists can commence after (failed) preventative treatment has been discontinued. - CGRP antagonists should be stopped after 6–12 months of use in patients with controlled symptoms.
	Population: chronic migraine - Use of CGRP antagonists shown to be effective and safe as preventative medication for chronic migraine.
	- CGRP antagonists are indicated for all patients with chronic migraine who have failed two or more previous treatments.
	- Use of CGRP antagonists can commence after (failed) preventative treatment has been discontinued.
	- CGRP antagonists should be stopped after 6–12 months of use in patients with controlled symptoms.
	(Strength of recommendations: NR)
Mexican	Population: chronic migraine
Association of Headaches and	Overall monoclonal antibodies directed to the CGRP receptor or ligand are safe as first-line or adjuvant treatments for chronic migraine, with minimal side effects and monthly or quarterly administration in adult patients (strong recommendation ^g with a high QoE ^h)
Migraine, Mexico, 2021	Specific recommendations are as follows:
	- Intravenous eptinezumab is recommended as first-line treatment for chronic migraine at a dosage of 300 mg quarterly for 9–12 months (strong recommendation ^g , high QoE ^h)
Velez-Jimenez et al 2021 ¹⁶¹	- Subcutaneous galcanezumab is recommended as first line treatment for chronic migraine at a dosage of 240 mg (initial) and 120 mg (monthly) for an undefined time 9–12 months (strong recommendation ⁹ , high QoE ^h)
	- Subcutaneous erenumab is recommended as first-line treatment for chronic migraine at a dosage of 70 or 140 mg (monthly) for 9–12 months (strong recommendation ^g , high QoE ^h)
	- Subcutaneous fremanezumab is recommended as first-line or adjuvant treatment for chronic migraine at a dosage of 225 mg (monthly) or 675 mg (quarterly) for 9–12 months (strong recommendations, high QoE ^h)
Position statements	

American	Use of CGRP antagonists approved when all the following are met:
Headache Society, USA, 2018 ¹⁶²	- Prescribed by a licensed medical provider
	- Patient ≥ 18 years of age
	- Diagnosis of ICHD-3 migraine with or without aura (4–7 MHD) and at least moderate disability (MIDAS > 11, HIT-6 > 50) AND inability to tolerate (due to side effects) or inadequate response to a 6-week trial of at least 2 of the following:
	1. Topiramate
	2. Divalproex sodium/valproate sodium
	3. Beta-blocker: metoprolol, propranolol, timolol, atenolol, nadolol
	4. Tricyclic antidepressant: amitriptyline, nortriptyline
	5. Serotonin-norepinephrine reuptake inhibitor: venlafaxine, duloxetine
	6. Other Level A or B treatments (established efficacy or probably effective) according to AAN-AHS guideline
	- Diagnosis of ICHD-3 migraine with or without aura (8–14 MHD) and inability to tolerate (due to side effects) or inadequate response to a 6-week trial of at least 2 of the above (1–6).
	- Diagnosis of ICHD-3 chronic migraine and inability to tolerate (due to side effects) or inadequate response to a 6-week trial of at least 2 of the above (1–6) OR inability to tolerate or inadequate response to a minimum of 2 quarterly injection (6 months) of onabotulinumtoxinA.
	(Strength of recommendations: NR)
	Criteria for continuation of CGRP antagonists after initial use is approved if either of the following are met:
	- Reduction in mean MHD of ≥ 50% relative to pre-treatment baseline
	- A clinically meaningful improvement in ANY of the following validated migraine-specific patient-reported outcome measures:
	1. MIDAS: reduction of \geq 5 points when baseline score is 11–20 or reduction of \geq 30% when baseline scores > 20
	2. MPFID: reduction of \geq 5 points
	3. HIT-6: reduction of \geq 5 points
	(Strength of recommendations: NR)
British Association for the Study of	- Erenumab and galcanezumab have been approved for both chronic (≥ 15 headache days per month, with at least 8 migraine days) and episodic (≥ 4 migraine days per month) migraine and fremanezumab has only been approved for chronic migraine.
Headache ¹⁶³ , UK, 2021	- All patients are required to have failed at least three previous preventive medications.
	- At three months, treatment can be continued if patients with episodic migraine have experienced a \geq 50% reduction in migraine days, or those with chronic migraine have experienced a \geq 30% reduction in migraine days.
	- Particular attention is recommended for patients with high frequency episodic migraine (> 8-10 migraine days per month) in whom treatment may prevent chronic migraine. - The choice of CGRP antagonist to start should be made by clinicians according to the NICE stipulations, local formulary guidelines, and clinical expertise.

	- CGRP antagonists should be prescribed by any doctor who is capable of diagnosing, managing, and following up patients with migraine (including, but not be limited to, neurologists in specialist headache clinics, general neurologists, and GPs with a special interest in headache).
	- All patients on CGRP antagonists must keep a headache diary (of any type capable of indicating monthly headache and migraine days).
	- Patients must have a mechanism to report any adverse effects relating to treatment, all three CGRP antagonists are yellow card medications. In particular, worsening or de novo hypertension in patients treated with erenumab.
	- Patients should remain under the care of the prescribing clinician until treatment is no longer required. Where possible, data should be collected for audit purposes, and for inclusion in a proposed national registry.
	- In patients that responded to CGRP antagonists at 3 months, an agreed length of further treatment should be instituted depending on the severity of their condition pre- treatment, but the need for ongoing treatment should be assessed on at least an annual basis.
	- There is emerging evidence that patients who do not respond to one CGRP antagonist may have a clinically meaningful response to another member of the class, and BASH recommend that clinicians consider trial of a second or subsequent CGRP antagonist if a patient does not respond to the first choice.
	(Strength of recommendations: NR)
Consensus stateme	nts
American	Use of CGRP antagonists approved when all the following are met:
Headache Society,	- Prescribed by a licensed medical provider
USA, 2021	- Patient ≥ 18 years of age
Ailani et al 2021 ¹⁶⁴	- Diagnosis of ICHD-3 migraine with or without aura (4–7 MHD) and at least moderate disability (MIDAS ≥ 11, HIT-6 > 50) AND inability to tolerate (due to side effects) or inadequate response to an 8-week trial of at least 2 of the following:
	1. Topiramate
Note: slight	2. Divalproex sodium/valproate sodium
variation from 2018	3. Beta-blocker: metoprolol, propranolol, timolol, atenolol, nadolol
position statement. Changes	4. Tricyclic antidepressant: amitriptyline, nortriptyline
underlined.	5. Serotonin-norepinephrine reuptake inhibitor: venlafaxine, duloxetine
<u>unuoninou</u> .	6. Other Level A or B treatments (established efficacy or probably effective) according to AAN scheme for classification of evidence
	- Diagnosis of ICHD-3 migraine with or without aura (8–14 MHD) and inability to tolerate (due to side effects) or inadequate response to an 8-week trial of at least 2 of the above (1-6).
	- Diagnosis of ICHD-3 chronic migraine and inability to tolerate (due to side effects) or inadequate response to an 8-week trial of at least 2 of the above (1-6) OR inability to tolerate or inadequate response to a minimum of 2 quarterly injection (6 months) of onabotulinumtoxinA.
	(Strength of recommendations: NR)
	Criteria for continuation of CGRP antagonists after initial use is approved if either of the following are met:
	- Reduction in mean MHD or headache days of at least moderate severity of ≥ 50% relative to pre-treatment baseline
	- A clinically meaningful improvement in ANY of the following validated migraine-specific patient-reported outcome measures:

	1. MIDAS: reduction of \geq 5 points when baseline score is 11–20 or reduction of \geq 30% when baseline scores > 20
	2. MPFID: reduction of ≥ 5 points
	3. HIT-6: reduction of \geq 5 points
	(Strength of recommendations: NR)
Danish Headache Society, Denmark, 2021	Diagnosis and management in 10 steps: CGRP antagonists (Erenumab, fremanezumab, galcanezumab and eptinezumab) are considered a third-line preventative medication for migraine (behind beta blockers (propranolol, metoprolol, atenolol, bisoprolol), topiramate, candesartan (first-line treatments) and flunarizine, amitriptyline, sodium valproatea (second-line treatments). Preventative medications are recommended for patients adversely affected by migraine on \geq 2 days per month despite optimised acute therapy.
Eigenbrodt et al	Recommended dosages as follows:
2021 ¹⁶⁵	- Erenumab 70–140 mg subcutaneous every 4 weeks
	- Fremanezumab 225 mg subcutaneous every month or 675 mg subcutaneous every 3 months
	- Galcanezumab start dose 240 mg subcutaneous followed by 120 mg subcutaneous every month
	- Eptinezumab 100–300 mg intravenous every 3 months
	Contraindications include hypersensitivity, patients with a history of stroke, subarachnoid haemorrhage, coronary heart disease, inflammatory bowel disease, chronic obstructive pulmonary disease or impaired wound healing.
	(Strength of recommendations: NR)
Danish Headache	CGRP antagonists listed as one of several preventative treatments. Recommended doses as follows:
Society, Denmark,	- Erenumab 70–140 mg subcutaneous every 4 weeks
2021	- Fremanezumab 225 mg subcutaneous every month or 675 mg subcutaneous every 3 months
	- Galcanezumab start dose 240 mg subcutaneous followed by 120 mg subcutaneous every month
Schytz et al 2021 ¹⁶⁶	- Eptinezumab 100–300 mg intravenous every 3 months
	In Denmark, erenumab and fremanezumab are currently recommended as possible preventive treatment for patients with chronic migraine who have experienced preventative treatment failure with at least one anti-hypertensive and one anti-epileptic.
	Medication overuse headache should be attempted to be treated before initiating CGRP antagonist treatment.
	In Denmark, the right to prescribe CGRP antagonists is limited to specialists in neurology who are employed in a hospital. CGRP antagonists are dispensed from hospital.
	(Strength of recommendations: NR)
Technology Apprais	al Guidance
National Institute	Fremanezumab is recommended in adults, only if:
for Clinical	- They have ≥ 4 migraine days per month
Excellence ¹⁶⁷ , UK,	- Failed ≥ 3 preventive drug treatments
2022 ⁱ	- The company provides it according to the commercial arrangement.
	Fremanezumab should be stopped after 12 weeks if:

	 Episodic (< 15 MHD) migraine frequency does not reduce by ≥ 50% or Chronic (≥ 15 MHD with at least 8 having features of migraine) migraine frequency does not reduce by ≥ 30%. (Strength of recommendations: NR)
National Institute for Clinical Excellence ¹⁴⁹ , UK, 2021	Erenumab is recommended in adults, only if: - They have ≥ 4 migraine days per month - Failed ≥ 3 preventive drug treatments - A dose of 140 mg is used - The company provides it according to the commercial arrangement. Erenumab should be stopped after 12 weeks if: - Episodic (< 15 MHD) migraine frequency does not reduce by ≥ 50% or - Chronic (≥ 15 MHD with at least 8 having features of migraine) migraine frequency does not reduce by ≥ 30%. (Strength of recommendations: NR)
National Institute for Clinical Excellence ¹⁵¹ , UK, 2020	Galcanezumab is recommended in adults, only if: - They have ≥ 4 migraine days per month - Failed ≥ 3 preventive drug treatments - The company provides it according to the commercial arrangement. Galcanezumab should be stopped after 12 weeks if: - Episodic (< 15 MHD) migraine frequency does not reduce by ≥ 50% or

Abbreviations

AAN = American Academy of Neurology, AHS = American Headache Society, BASH = British Association for the Study of Headache, CGRP = calcitonin-gene-related peptide, COPD = chronic obstructive pulmonary disease, EFNS = European Federation of Neurological Societies, GP = general practitioner, HIT-6 = 6 item Headache Impact Test, ICHD = International Classification of Headache Disorders, LoE = level of evidence, MHD = monthly headache days, MIDAS = Migraine Disability Assessment, MPFID = Migraine Physical Function Impact Diary, NICE = National Institute of Clinical Excellence, NR = not reported, QoE = quality of evidence, QoL = quality of life, RCT = randomised controlled trial, SIGN = Scottish Intercollegiate Guidelines Network, SPC = Portuguese Headache Society, UK = United Kingdom, USA = United States of America.

<u>Notes</u>

^a Class A Evidence not defined.

^b GRADE Approach used where quality of evidence was rated as high, medium, low or very low based on study design, study limitations, inconsistency, indirectness, imprecision, publication bias, effect size, dose response and confounding and strength (strong or weak) and direction (for or against) of recommendation were determined on basis of balance between desirable and undesirable effects, quality of evidence, values and preferences and costs.

• Strength of recommendation: strong = benefits clearly outweigh risks and burdens for most patients - can apply to most patients in most circumstances.

^d Strength of recommendation: moderate = benefits clearly outweigh risks and burdens for most patients – can apply to most patients, but there is a chance the recommendation may change with more research.

• Level A = Information collected from several randomised clinical trials or meta-analyses

^f Grade of recommendation: I = There is evidence and/or a general consensus that a certain procedure/treatment is beneficial, useful and effective.

9 Strong recommendation (GRADE Approach) where benefits of action outweigh disadvantages, the recommendation is helpful (independent of the QoE supporting it).

^h High QoE = at least two or more systematic reviews or controlled clinical trials.

ⁱ Guidance for eptinezumab was in development at the time of search (8/3/22).

Reference list

- 1. Bundesamt für Gesundheit BAG. Spezialitätenliste (SL) 2021 [Publikation vom 1. Oktober 2021:[Available from: <u>http://www.xn--spezialittenliste-yqb.ch/ShowPreparations.aspx</u>].
- 2. INAHTA. INAHTA MEMBERS LIST 2022 [Available from: https://www.inahta.org/members/members_list/].
- 3. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. *Cephalalgia* 2018;38(1):1-211.
- 4. Clinical Expert (Anonymised). CGRP-antagonists for the prevention of migraine: Questions for clinical experts. In: RACS, ed., 2021.
- 5. Silberstein SD, Marmura MJ, Shaw J, et al. Headache Prophylaxis With BoNTA: Patient Characteristics. *Headache: The Journal of Head and Face Pain* 2010;50(1):63-70.
- 6. Tfelt-Hansen P, Block G, Dahlöf C, et al. Guidelines for Controlled Trials of Drugs in Migraine: Second Edition. *Cephalalgia* 2000;20(9):765-86.
- Silberstein S, Tfelt-Hansen P, Dodick DW, et al. Guidelines for Controlled Trials of Prophylactic Treatment of Chronic Migraine in Adults. *Cephalalgia* 2008;28(5):484-95.
- 8. Bayliss M, Batenhorst A. The HIT-6™ a user's guide. Lincoln, RI: QualityMetric Incorporated 2002
- Coeytaux RR, Kaufman JS, Chao R, et al. Four methods of estimating the minimal important difference score were compared to establish a clinically significant change in Headache Impact Test. *Journal of Clinical Epidemiology* 2006;59(4):374-80.
- Smelt AFH, Assendelft WJJ, Terwee CB, et al. What is a clinically relevant change on the HIT-6 questionnaire? An estimation in a primary-care population of migraine patients. *Cephalalgia* 2013;34(1):29-36.
- 11. Carvalho GF, Luedtke K, Braun T. Minimal important change and responsiveness of the Migraine Disability Assessment Score (MIDAS) questionnaire. *J Headache Pain* 2021;22(1):126.
- 12. Cole JC, Lin P, Rupnow MFT. Minimal Important Differences in the Migraine-Specific Quality of Life Questionnaire (MSQ) Version 2.1. *Cephalalgia* 2009;29(11):1180-87.
- Dodick DW, Silberstein S, Saper J, et al. The Impact of Topiramate on Health-Related Quality of Life Indicators in Chronic Migraine. *Headache: The Journal of Head and Face Pain* 2007;47(10):1398-408.
- 14. Calixtre LB, Oliveira AB, Alburquerque-Sendín F, et al. What is the minimal important difference of pain intensity, mandibular function, and headache impact in patients with temporomandibular disorders? Clinical significance analysis of a randomized controlled trial. *Musculoskeletal Science and Practice* 2020;46:102108.
- 15. Dodick DW, Ashina M, Br, et al. ARISE: a Phase 3 randomized trial of erenumab for episodic migraine. *Cephalalgia* 2018;38(6):1026-37.
- 16. NCT02483585. [Available from: <u>https://clinicaltrials.gov/ct2/show/NCT02483585?term=Study+to+Evaluate+the+Efficacy+and+</u> <u>Safety+of+Erenumab+%28AMG+334%29+Compared+to+Placebo+in+Migraine+Prevention+</u> <u>%28ARISE%29&draw=2&rank=1</u>].
- Wang SJ, Roxas AA, Saravia B, et al. Randomised, controlled trial of erenumab for the prevention of episodic migraine in patients from Asia, the Middle East, and Latin America: the EMPOwER study. *Cephalalgia* 2021;41(13):1285-97.
- Reuter U, Goadsby PJ, Lanteri-Minet M, et al. Efficacy and tolerability of erenumab in patients with episodic migraine in whom two-to-four previous preventive treatments were unsuccessful: a randomised, double-blind, placebo-controlled, phase 3b study. *Lancet (london, england)* 2018;392(10161):2280-87.

- 19. Lanteri-Minet M, Goadsby PJ, Reuter U, et al. Effect of erenumab on functional outcomes in patients with episodic migraine in whom 2-4 preventives were not useful: results from the LIBERTY study. *Journal of neurology, neurosurgery, and psychiatry* 2021;92(5):466-72.
- 20. Goadsby PJ, Reuter U, Lanteri-Minet M, et al. Long-term Efficacy and Safety of Erenumab Results From 64 Weeks of the LIBERTY Study. *Neurology* 2021;96(22):E2724-E35.
- Ferrari MD, Reuter U, Goadsby PJ, et al. Two-year efficacy and safety of erenumab in participants with episodic migraine and 2-4 prior preventive treatment failures: results from the LIBERTY study. *Journal of neurology, neurosurgery, and psychiatry* 2022;93:254-62.
- 22. NCT03096834. [Available from: https://clinicaltrials.gov/ct2/show/NCT03096834].
- 23. Sakai F, Takeshima T, Tatsuoka Y, et al. A Randomized Phase 2 Study of Erenumab for the Prevention of Episodic Migraine in Japanese Adults. *Headache* 2019;59(10):1731-42.
- 24. NCT02630459. [Available from: https://clinicaltrials.gov/ct2/show/NCT02630459].
- 25. Sakai F, Takeshima T, Tatsuoka Y, et al. Long-term efficacy and safety during open-label erenumab treatment in Japanese patients with episodic migraine. *Headache* 2021;61:653-61.
- 26. Goadsby PJ, Reuter U, Hallström Y, et al. A Controlled Trial of Erenumab for Episodic Migraine. *New England journal of medicine* 2017;377(22):2123-32.
- 27. Broessner G, Reuter U, Bonner JH, et al. The Spectrum of Response to Erenumab in Patients With Episodic Migraine and Subgroup Analysis of Patients Achieving ≥50%, ≥75%, and 100% Response. *Headache: the journal of head and face pain* 2020;60(9):2026-40.
- Buse DC, Lipton RB, Hallström Y, et al. Migraine-related disability, impact, and health-related quality of life among patients with episodic migraine receiving preventive treatment with erenumab. *Cephalalgia* 2018;38(10):1622-31.
- 29. Diener HC, Ashina M, Ritter S, et al. Erenumab prevents the occurrence of migraine attacks and not just migraine days: post-hoc analyses of a phase III study. *Cephalalgia* 2021:6.
- Goadsby PJ, Paemeleire K, Broessner G, et al. Efficacy and safety of erenumab (AMG334) in episodic migraine patients with prior preventive treatment failure: a subgroup analysis of a randomized, double-blind, placebo-controlled study. *Cephalalgia* 2019;39(7):817-26.
- 31. Goadsby PJ, Reuter U, Hallström Y, et al. One-year sustained efficacy of erenumab in episodic migraine: results of the STRIVE study. *Neurology* 2020;95(5):e469-e79.
- 32. McAllister PJ, Turner I, Reuter U, et al. Timing and durability of response to erenumab in patients with episodic migraine. *Headache* 2021;61(10):1553-61.
- 33. Pavlovic JM, Paemeleire K, Göbel H, et al. Efficacy and safety of erenumab in women with a history of menstrual migraine. *Journal of headache and pain* 2020;21(1):1-9.
- 34. NCT02456740. [Available from: https://clinicaltrials.gov/ct2/show/NCT02456740].
- Sun H, Dodick DW, Silberstein S, et al. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. *The lancet Neurology* 2016;15(4):382-90.
- 36. Ashina M, Dodick D, Goadsby PJ, et al. Erenumab (AMG 334) in episodic migraine: interim analysis of an ongoing open-label study. *Neurology* 2017;89(12):1237-43.
- Ashina M, Goadsby PJ, Reuter U, et al. Long-term safety and tolerability of erenumab: three-plus year results from a five-year open-label extension study in episodic migraine. *Cephalalgia* 2019;39(11):1455-64.
- Ashina M, Goadsby PJ, Reuter U, et al. Long-term efficacy and safety of erenumab in migraine prevention: results from a 5-year, open-label treatment phase of a randomized clinical trial. *European journal of neurology* 2021;28(5):1716-25.
- 39. NCT01952574. [Available from: https://clinicaltrials.gov/ct2/show/NCT01952574].

- Tepper S, Ashina M, Reuter U, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. *The lancet Neurology* 2017;16(6):425-34.
- 41. Ashina M, Tepper S, Br, et al. Efficacy and safety of erenumab (AMG334) in chronic migraine patients with prior preventive treatment failure: a subgroup analysis of a randomized, double-blind, placebo-controlled study. *Cephalalgia* 2018;38(10):1611-21.
- 42. Brandes JL, Diener HC, Dolezil D, et al. The spectrum of response to erenumab in patients with chronic migraine and subgroup analysis of patients achieving ≥50%, ≥75%, and 100% response. *Cephalalgia* 2020;40(1):28-38.
- 43. Lipton RB, Burstein R, Buse DC, et al. Efficacy of erenumab in chronic migraine patients with and without ictal allodynia. *Cephalalgia* 2021;41(11):1152-60.
- 44. Lipton RB, Tepper SJ, Reuter U, et al. Erenumab in chronic migraine: patient-reported outcomes in a randomized double-blind study. *Neurology* 2019;92(19):e2250-e60.
- 45. Lipton RB, Tepper SJ, Silberstein SD, et al. Reversion from chronic migraine to episodic migraine following treatment with erenumab: results of a post-hoc analysis of a randomized, 12-week, double-blind study and a 52-week, open-label extension. *Cephalalgia* 2021;41(1):6-16.
- 46. Tepper SJ, Diener HC, Ashina M, et al. Erenumab in chronic migraine with medication overuse: subgroup analysis of a randomized trial. *Neurology* 2019;92(20):e2309-e20.
- 47. Tepper SJ, Lucas S, Ashina M, et al. Timing and durability of response to erenumab in patients with chronic migraine. *Headache* 2021;61(8):1255-63.
- NCT02066415. [Available from: <u>https://clinicaltrials.gov/ct2/show/NCT02066415]</u>.
- 49. Reuter U, Ehrlich M, Gendolla A, et al. Erenumab versus topiramate for the prevention of migraine - a randomised, double-blind, active-controlled phase 4 trial. *Cephalalgia* 2022;42:108-18.
- 50. NCT03828539. [Available from: https://clinicaltrials.gov/ct2/show/NCT03828539].
- Takeshima T, Sakai F, Hirata K, et al. Erenumab treatment for migraine prevention in Japanese patients: efficacy and safety results from a Phase 3, randomized, double-blind, placebocontrolled study. *Headache* 2021;61(6):927-35.
- 52. Hirata K, Sakai F, Takeshima T, et al. Efficacy and safety of erenumab in Japanese migraine patients with prior preventive treatment failure or concomitant preventive treatment: subgroup analyses of a phase 3, randomized trial. *Journal of headache and pain* 2021;22(1):110.
- 53. NCT03812224. [Available from: https://clinicaltrials.gov/ct2/show/NCT03812224].
- 54. Ashina M, Saper J, Cady R, et al. Eptinezumab in episodic migraine: a randomized, double-blind, placebo-controlled study (PROMISE-1). *Cephalalgia* 2020;40(3):241-54.
- 55. Smith TR, Janelidze M, Chakhava G, et al. Eptinezumab for the Prevention of Episodic Migraine: sustained Effect Through 1 Year of Treatment in the PROMISE-1 Study. *Clinical therapeutics* 2020;42(12):2254-65.e3.
- 56. NCT02559895. [Available from: https://clinicaltrials.gov/ct2/show/NCT02559895].
- 57. Dodick DW, Lipton RB, Silberstein S, et al. Eptinezumab for prevention of chronic migraine: a randomized phase 2b clinical trial. *Cephalalgia* 2019;39(9):1075-85.
- Lipton RB, Goadsby PJ, Smith J, et al. Efficacy and safety of eptinezumab in patients with chronic migraine: PROMISE-2. *Neurology* 2020;94(13):e1365-e77.
- Buse DC, Winner PK, Charleston L, et al. Early response to eptinezumab indicates high likelihood of continued response in patients with chronic migraine. *Journal of Headache and Pain* 2022;23
- 60. Diener HC, Marmura MJ, Tepper SJ, et al. Efficacy, tolerability, and safety of eptinezumab in patients with a dual diagnosis of chronic migraine and medication-overuse headache: subgroup analysis of PROMISE-2. *Headache* 2021;61(1):125-36.

- 61. Lipton RB, Dodick DW, Ailani J, et al. Patient-identified most bothersome symptom in preventive migraine treatment with eptinezumab: a novel patient-centered outcome. *Headache* 2021;61(5):766-76.
- 62. Marmura MJ, Diener HC, Cowan RP, et al. Preventive migraine treatment with eptinezumab reduced acute headache medication and headache frequency to below diagnostic thresholds in patients with chronic migraine and medication-overuse headache. *Headache* 2021;61(9):1421-31.
- 63. Silberstein S, Diamond M, Hindiyeh NA, et al. Eptinezumab for the prevention of chronic migraine: Efficacy and safety through 24 weeks of treatment in the phase 3 PROMISE-2 (Prevention of migraine via intravenous ALD403 safety and efficacy-2) study. *Journal of Headache and Pain* 2020;21
- 64. NCT02974153. [Available from: https://clinicaltrials.gov/ct2/show/NCT02974153].
- 65. Bigal ME, Dodick DW, Rapoport AM, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, doubleblind, placebo-controlled, phase 2b study. *The lancet Neurology* 2015;14(11):1081-90.
- 66. Silberstein SD, Rapoport AM, Loupe PS, et al. The Effect of Beginning Treatment With Fremanezumab on Headache and Associated Symptoms in the Randomized Phase 2 Study of High Frequency Episodic Migraine: post-Hoc Analyses on the First 3 Weeks of Treatment. *Headache* 2019;59(3):383-93.
- 67. NCT02025556.
- 68. Dodick DW, Silberstein SD, Bigal ME, et al. Effect of Fremanezumab Compared With Placebo for Prevention of Episodic Migraine: A Randomized Clinical Trial. *JAMA* 2018;319(19):1999-2008.
- 69. Brandes JL, Kudrow D, Yeung PP, et al. Effects of fremanezumab on the use of acute headache medication and associated symptoms of migraine in patients with episodic migraine. *Cephalalgia* 2020;40(5):470-77.
- 70. NCT02629861. [Available from: https://clinicaltrials.gov/ct2/show/NCT02629861].
- 71. Sakai F, Suzuki N, Kim BK, et al. Efficacy and safety of fremanezumab for episodic migraine prevention: Multicenter, randomized, double-blind, placebo-controlled, parallel-group trial in Japanese and Korean patients. *Headache* 2021;61(7):1102-11.
- 72. NCT03303092. [Available from: https://clinicaltrials.gov/ct2/show/NCT03303092].
- 73. Bigal ME, Edvinsson L, Rapoport AM, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebocontrolled, phase 2b study. *The lancet Neurology* 2015;14(11):1091-100.
- 74. Bigal M, Rapoport A, Tepper S, et al. TEV-48125 for the preventive treatment of chronic migraineefficacy at early time points. *Headache* 2016;5:265.
- 75. NCT02021773.
- 76. Silberstein SD, Dodick DW, Bigal ME, et al. Fremanezumab for the Preventive Treatment of Chronic Migraine. *New England journal of medicine* 2017;377(22):2113-22.
- 77. Winner PK, Spierings ELH, Yeung PP, et al. Early Onset of Efficacy With Fremanezumab for the Preventive Treatment of Chronic Migraine. *Headache: the journal of head and face pain* 2019;59(10):1743-52.
- 78. Silberstein SD, Cohen JM, Seminerio MJ, et al. The impact of fremanezumab on medication overuse in patients with chronic migraine: subgroup analysis of the HALO CM study. *Journal of headache and pain* 2020;21(1):114.
- 79. Lipton RB, Cohen JM, hi SK, et al. Effect of fremanezumab on quality of life and productivity in patients with chronic migraine. *Neurology* 2020;95(7):e878-e88.
- Lipton RB, Cohen JM, Galic M, et al. Effects of fremanezumab in patients with chronic migraine and comorbid depression: subgroup analysis of the randomized HALO CM study. *Headache* 2021;61(4):662-72.

- Lipton RB, Cohen JM, Bibeau K, et al. Reversion From Chronic Migraine to Episodic Migraine in Patients Treated With Fremanezumab: post Hoc Analysis From HALO CM Study. *Headache* 2021;60(10):2444-53.
- 82. NCT02621931. [Available from: https://clinicaltrials.gov/ct2/show/NCT02621931].
- Sakai F, Suzuki N, Kim BK, et al. Efficacy and safety of fremanezumab for chronic migraine prevention: multicenter, randomized, double-blind, placebo-controlled, parallel-group trial in Japanese and Korean patients. *Headache* 2021;61(7):1092-101.
- 84. NCT03303079. [Available from: https://clinicaltrials.gov/ct2/show/NCT03303079].
- 85. Ferrari MD, Diener HC, Ning X, et al. Fremanezumab versus placebo for migraine prevention in patients with documented failure to up to four migraine preventive medication classes (FOCUS): a randomised, double-blind, placebo-controlled, phase 3b trial. *Lancet (london, england)* 2019;394(10203):1030-40.
- Pazdera L, Cohen JM, Ning X, et al. Fremanezumab for the Preventive Treatment of Migraine: subgroup Analysis by Number of Prior Preventive Treatments with Inadequate Response. *Cephalalgia* 2021;41(10):1075-88.
- 87. NCT03308968. [Available from: https://clinicaltrials.gov/ct2/show/NCT03308968].
- Batting States and S
- Stauffer VL, Dodick DW, Zhang Q, et al. Evaluation of Galcanezumab for the Prevention of Episodic Migraine: the EVOLVE-1 Randomized Clinical Trial. *JAMA neurology* 2018;75(9):1080-88.
- 90. NCT02614183. [Available from: <u>https://clinicaltrials.gov/ct2/show/NCT02614183?term=Evaluation+of+Galcanezumab+in+the+</u> <u>Prevention+of+Episodic+Migraine-+the+EVOLVE-1+Study&draw=2&rank=1</u>].
- 91. Skljarevski V, Matharu M, Millen BA, et al. Efficacy and safety of galcanezumab for the prevention of episodic migraine: results of the EVOLVE-2 Phase 3 randomized controlled clinical trial. *Cephalalgia* 2018;38(8):1442-54.
- 92. NCT02614196.
- 93. Sakai F, Ozeki A, Skljarevski V. Efficacy and safety of galcanezumab for prevention of migraine headache in Japanese patients with episodic migraine: a phase 2 randomized controlled clinical trial. Cephalalgia reports 2020;3
- 94. NCT02959177. [Available from: https://clinicaltrials.gov/ct2/show/NCT02959177].
- 95. Igarashi H, Shibata M, Ozeki A, et al. Early onset and maintenance effect of galcanezumab in japanese patients with episodic migraine. *Journal of Pain Research* 2021;14:3555-64.
- 96. Shibata M, Nakamura T, Ozeki A, et al. Migraine-Specific Quality-of-Life Questionnaire (MSQ) Version 2.1 Score Improvement in Japanese Patients with Episodic Migraine by Galcanezumab Treatment: japan Phase 2 Study. *Journal of pain research* 2020;13:3531-38.
- 97. Tatsuoka Y, Takeshima T, Ozeki A, et al. Treatment Satisfaction of Galcanezumab in Japanese Patients with Episodic Migraine: A Phase 2 Randomized Controlled Study. *Neurology and Therapy* 2021;10(1):265-78.
- Skljarevski V, Oakes TM, Zhang Q, et al. Effect of Different Doses of Galcanezumab vs Placebo for Episodic Migraine Prevention: a Randomized Clinical Trial. JAMA neurology 2018;75(2):187-93.
- 99. NCT02163993. [Available from: https://clinicaltrials.gov/ct2/show/NCT02163993].
- 100. Oakes TMM, Skljarevski V, Zhang Q, et al. Safety of galcanezumab in patients with episodic migraine: a randomized placebo-controlled dose-ranging Phase 2b study. *Cephalalgia* 2018;38(6):1015-25.

- 101. Ayer DW, Skljarevski V, Ford JH, et al. Measures of Functioning in Patients With Episodic Migraine: findings From a Double-Blind, Randomized, Placebo-Controlled Phase 2b Trial With Galcanezumab. *Headache: the journal of head and face pain* 2018;58(8):1225-35.
- 102. Detke HC, Goadsby PJ, Wang SF, et al. Galcanezumab in chronic migraine The randomized, double-blind, placebo-controlled REGAIN study. *Neurology* 2018;91(24):E2211-E21.
- 103. Ruff DD, Ford JH, Tockhorn-Heidenreich A, et al. Efficacy of galcanezumab in patients with chronic migraine and a history of preventive treatment failure. *Cephalalgia* 2019;39(8):931-44.
- 104. NCT02614261. [Available from: https://clinicaltrials.gov/ct2/show/NCT02614261].
- 105. Camporeale A, Kudrow D, Sides R, et al. A phase 3, long-term, open-label safety study of Galcanezumab in patients with migraine. *BMC neurology* 2018;18(1):188.
- 106. Mulleners WM, Kim BK, Láinez MJA, et al. Safety and efficacy of galcanezumab in patients for whom previous migraine preventive medication from two to four categories had failed (CONQUER): a multicentre, randomised, double-blind, placebo-controlled, phase 3b trial. *The lancet Neurology* 2020;19(10):814-25.
- 107. Okonkwo R, Tockhorn-Heidenreich A, Stroud C, et al. Efficacy of galcanezumab in patients with migraine and history of failure to 3?4 preventive medication categories: subgroup analysis from CONQUER study. *Journal of headache and pain* 2021;22(1)
- 108. NCT03559257.
- 109. Yu S, Kim BK, Wang H, et al. A phase 3, randomised, placebo-controlled study of erenumab for the prevention of chronic migraine in patients from Asia: the DRAGON study. *Journal of Headache and Pain* 2022;23(1):146.
- 110. Ashina M, Lanteri-Minet M, Pozo-Rosich P, et al. Safety and efficacy of eptinezumab for migraine prevention in patients with two-to-four previous preventive treatment failures (DELIVER): a multi-arm, randomised, double-blind, placebo-controlled, phase 3b trial. *The Lancet Neurology* 2022;21(7):597-607.
- 111. Goadsby PJ, Barbanti P, Lambru G, et al. Eptinezumab improved patient-reported outcomes and quality of life in patients with migraine and prior preventive treatment failures. *European journal of neurology* 2022
- 112. Hu B, Li G, Wu S, et al. Galcanezumab in episodic migraine: the phase 3, randomized, doubleblind, placebo-controlled PERSIST study. *Journal of Headache and Pain* 2022;23(1):90.
- 113. Ford JH, Stauffer VL, McAllister P, et al. Functional impairment and disability among patients with migraine: evaluation of galcanezumab in a long-term, open-label study. *Quality of life research* 2021;30(2):455-64.
- 114. Mahon R, Lang A, Vo P, et al. Cost-Effectiveness of Erenumab for the Preventive Treatment of Migraine in Patients with Prior Treatment Failures in Sweden. *PharmacoEconomics* 2021;39:357-72.
- 115. Irimia P, Santos-Lasaosa S, Garcia Bujalance L, et al. Cost of fremanezumab, erenumab, galcanezumab and onabotulinumtoxinA associated adverse events, for migraine prophylaxis in Spain. *Expert Review of Pharmacoeconomics and Outcomes Research* 2021;21:285-97.
- 116. Giannouchos TV, Mitsikostas DD, Ohsfeldt RL, et al. Cost-Effectiveness Analysis of Erenumab Versus OnabotulinumtoxinA for Patients with Chronic Migraine Attacks in Greece. *Clin Drug Investig* 2019;39(10):979-90.
- 117. Porter JK, Di Tanna GL, Lipton RB, et al. Costs of Acute Headache Medication Use and Productivity Losses Among Patients with Migraine: Insights from Three Randomized Controlled Trials. *PharmacoEconomics - Open* 2019;3:411-17.
- 118. Sussman M, Benner J, Neumann P, et al. Cost-effectiveness analysis of erenumab for the preventive treatment of episodic and chronic migraine: Results from the US societal and payer perspectives. *Cephalalgia* 2018;38(10):1644-57.

- 119. Lipton RB, Brennan A, Palmer S, et al. Estimating the clinical effectiveness and value-based price range of erenumab for the prevention of migraine in patients with prior treatment failures: a US societal perspective. *J Med Econ* 2018;21(7):666-75.
- 120. Mahon R, Huels J, Hacking V, et al. Economic evaluations in migraine: systematic literature review and a novel approach. *Journal of Medical Economics* 2020;23:864-76.
- 121. NICE. Botulinum toxin type A for the prevention of headaches in adults with chronic migraine: Technology appraisal guidance [TA260] 2012 [Available from: <u>https://www.nice.org.uk/guidance/ta260</u> accessed 13 August 2022].
- 122. Royle P CE, Walker C, Chong S, Kandala,N, Waugh N. Evidence review group report: Botulinum toxin type A for the prophylaxis of headaches in adults with chronic migraine: a single technology assessment: Warwick Evidence; 2011 [Available from: https://www.nice.org.uk/guidance/ta260/documents/migraine-chronic-botulinum-toxin-type-a-evidence-review-group-report2 accessed 13 August 2022].
- 123. Batty AJ, Hansen RN, Bloudek LM, et al. The cost-effectiveness of onabotulinumtoxinA for the prophylaxis of headache in adults with chronic migraine in the UK. *J Med Econ* 2013;16(7):877-87.
- 124. SMC. Botulinum toxin A (Botox®) 2017 [Available from: <u>https://www.scottishmedicines.org.uk/medicines-advice/botulinum-toxin-a-botox-resubmission-69211/</u> accessed 13 August 2022].
- 125. SMC. topiramate (Topamax) 2006 [Available from: <u>https://www.scottishmedicines.org.uk/media/2419/topiramate_topamax_297_06.pdf</u> accessed 13 August 2022].
- 126. Brown JS, Papadopoulos G, Neumann PJ, et al. Cost-effectiveness of topiramate in migraine prevention: results from a pharmacoeconomic model of topiramate treatment. *Headache* 2005;45(8):1012-22.
- 127. Ruggeri M, Drago C, Rosiello F, et al. Economic Evaluation of Treatments for Migraine: An Assessment of the Generalizability Following a Systematic Review. *PharmacoEconomics* 2020;38:473-84.
- 128. Mwamburi M, Tenaglia AT, Leibler EJ, et al. Cost-effectiveness of noninvasive vagus nerve stimulation for acute treatment of episodic migraine and role in treatment sequence strategies. *Am J Manag Care* 2018;24(24 Suppl):S527-s33.
- 129. Yu J, Smith KJ, Brixner DI. Cost effectiveness of pharmacotherapy for the prevention of migraine: a Markov model application. *CNS Drugs* 2010;24(8):695-712.
- 130. Hens M, Villaverde-Hueso A, Alonso V, et al. Comparative cost-effectiveness analysis of oral triptan therapy for migraine in four European countries. *Eur J Health Econ* 2014;15(4):433-7.
- 131. Ruggeri M. The cost effectiveness of Botox in Italian patients with chronic migraine. *Neurol Sci* 2014;35 Suppl 1:45-7.
- 132. Hollier-Hann G, Curry A, Onishchenko K, et al. Updated cost-effectiveness analysis of onabotulinumtoxinA for the prevention of headache in adults with chronic migraine who have previously received three or more preventive treatments in the UK. J Med Econ 2020;23(1):113-23.
- 133. Shauly O, Gould DJ, Patel KM. Cost-Utility Analysis of Surgical Decompression Relative to Injection Therapy for Chronic Migraine Headaches. *Aesthet Surg J* 2019;39(12):Np462-np70.
- 134. Amin A, Foster S, Hoyt M, et al. Direct cost and healthcare resource utilization of patients who initiate calcitonin gene-related peptide monoclonal antibodies by the number of prior preventive migraine medication classes. *Journal of Managed Care and Specialty Pharmacy* 2021;26:S48.
- 135. Badia X. The Burden of Migraine in Spain: Beyond Direct Costs. *PharmacoEconomics* 2004;22(9):591-603.

- 136. Chandler D, Szekely C, Aggarwal S, et al. Migraine Characteristics, Comorbidities, Healthcare Resource Utilization, and Associated Costs of Early Users of Erenumab in the USA: A Retrospective Cohort Study Using Administrative Claims Data. *Pain and Therapy* 2021;10:1551-66.
- 137. Foster SA, Hoyt M, Ye W, et al. Direct cost and healthcare resource utilization of patients with migraine before treatment initiation with calcitonin gene-related peptide monoclonal antibodies by the number of prior preventive migraine medication classes. *Current Medical Research and Opinion* 2021
- 138. McAllister P, Lamerato L, Krasenbaum LJ, et al. Real-world impact of fremanezumab on migraine symptoms and resource utilization in the United States. *Journal of Headache and Pain* 2021;22
- 139. Pradalier A. Economic Impact of Migraine and Other Episodic Headaches in France: Data from the GRIM2000 Study. *PharmacoEconomics* 2004;22(15):985-99.
- 140. Di Tanna GL, Porter JK, Lipton RB, et al. Longitudinal assessment of utilities in patients with migraine: an analysis of erenumab randomized controlled trials. *Health and quality of life outcomes* 2019;17(1):171-.
- 141. Matza LS, Deger KA, Vo P, et al. Health state utilities associated with attributes of migraine preventive treatments based on patient and general population preferences. *Quality of Life Research* 2019;28:2359-72.
- 142. Gerth WC. The Multinational Impact of Migraine Symptoms on Healthcare Utilisation and Work Loss. *PharmacoEconomics* 2001;19(2):197-206.
- 143. Seddik AH, Schiener C, Ostwald DA, et al. Social Impact of Prophylactic Migraine Treatments in Germany: A State-Transition and Open Cohort Approach. *Value in Health* 2021;24:1446-53.
- 144. Williams P. The Cost Effectiveness of Stratified Care in the Management of Migraine. *PharmacoEconomics* 2001;19(8):819-29.
- 145. Akhtar A. The Role of Anti-calcitonin Gene-related Peptide in Migraine and its Implication in Developing Countries: A Reasonable Option to Consider Despite Higher Cost. *Cureus* 2019;11(6):e4796.
- 146. CADTH. Erenumab 2020 [Available from: <u>https://www.cadth.ca/erenumab</u> accessed 13 August 2022].
- 147. CADTH. Fremanezumab 2021 [Available from: <u>https://www.cadth.ca/fremanezumab</u> accessed 13 August 2022].
- 148. CADTH. Galcanezumab 2021 [Available from: <u>https://www.cadth.ca/galcanezumab</u> accessed 13 August 2022].
- 149. NICE. Erenumab for preventing migraine: Technology appraisal guidance [TA682] 2021 [Available from: <u>https://www.nice.org.uk/guidance/ta682</u> accessed 8 June 2022].
- 150. NICE. Fremanezumab for preventing migraine (Rapid Review of TA631 [ID3952]): Committee Papers 2021 [Available from: <u>https://www.nice.org.uk/guidance/ta764/evidence/committee-papers-ta764-pdf-10952875693</u> accessed 13 August 2021].
- 151. NICE. Galcanezumab for preventing migraine: Technology appraisal guidance [TA659] 2020 [Available from: <u>https://www.nice.org.uk/guidance/ta659</u> accessed 8 June 2022].
- 152. British Association For The Study Of Headache. National Headache Management System For Adults 2019. 2019. <u>https://headache.org.uk/index.php/bash-guideline-2019</u> (accessed 7 May 2022).
- 153. Sacco S, Amin FM, Ashina M, et al. European Headache Federation guideline on the use of monoclonal antibodies targeting the calcitonin gene related peptide pathway for migraine prevention – 2022 update. *The Journal of Headache and Pain* 2022;23(1):67.
- 154. Sacco S, Bendtsen L, Ashina M, et al. European headache federation guideline on the use of monoclonal antibodies acting on the calcitonin gene related peptide or its receptor for migraine prevention. *The Journal of Headache and Pain* 2019;20(1):6.

- 155. Ducros A, de Gaalon S, Roos C, et al. Revised guidelines of the French headache society for the diagnosis and management of migraine in adults. Part 2: Pharmacological treatment. *Rev Neurol (Paris)* 2021;177(7):734-52.
- 156. Diener H-C, Holle-Lee D, Nägel S, et al. Treatment of migraine attacks and prevention of migraine: Guidelines by the German Migraine and Headache Society and the German Society of Neurology. *Clinical and Translational Neuroscience* 2019;3(1):2514183X18823377.
- 157. Stępień A, Kozubski W, Rożniecki JJ, et al. Migraine treatment recommendations developed by an Expert Group of the Polish Headache Society, the Headache Section of the Polish Neurological Society, and the Polish Pain Society. *Neurol Neurochir Pol* 2021;55(1):33-51.
- 158. Parreira EP, Fontes Ribeiro CAF, Gens H, et al. Recomendações Terapêuticas para Cefaleias da Sociedade Portuguesa de Cefaleias – 2021; Headache Treatment Guidelines of the Portuguese Headache Society – 2021. Sinapse 2021;21
- 159. Andrée C, Barone-Kaganas I, Biethahn S, et al. Therapieempfehlungen für primäre Kopfschmerzen. Schweizerische Kopfwehgesellschaft SKG 2021;Auflage 10.1, vollständig überarbeitet
- 160. Doctorovich ED, Martín-Bertuzzi F, Goicochea MT, et al. [Argentinean consensus guidelines on the use of monoclonal antibodies in patients with migraine]. *Rev Neurol* 2020;70(4):149-58.
- 161. Vélez-Jiménez M-K, Chiquete-Anaya E, Orta DSJ, et al. Comprehensive management of adults with chronic migraine: Clinical practice guidelines in Mexico. *Cephalalgia Reports* 2021;4:25158163211033969.
- 162. American Headache S. The American Headache Society Position Statement On Integrating New Migraine Treatments Into Clinical Practice. *Headache: The Journal of Head and Face Pain* 2019;59(1):1-18.
- 163. British Association For The Study Of Headache. Statement from the British Association for the Study of Headache (BASH) on the implementation of NICE guidance on CGRP monoclonal antibodies (mAbs) for the prevention of migraine – June 2021 2021 [Available from: bash.org.uk/wp-content/uploads/2021/06/BASH-statement-on-implementation-of-CGRPmAbs.pdf accessed 8 June 2022].
- 164. Ailani J, Burch RC, Robbins MS. The American Headache Society Consensus Statement: Update on integrating new migraine treatments into clinical practice. *Headache* 2021;61(7):1021-39.
- 165. Eigenbrodt AK, Ashina H, Khan S, et al. Diagnosis and management of migraine in ten steps. *Nature Reviews Neurology* 2021;17(8):501-14.
- 166. Schytz HW, Amin FM, Jensen RH, et al. Reference programme: diagnosis and treatment of headache disorders and facial pain. Danish Headache Society, 3rd edition, 2020. J Headache Pain 2021;22(1):22.
- 167. NICE. Fremanezumab for preventing migraine: Technology appraisal guidance [TA764] 2022 [Available from: <u>https://www.nice.org.uk/guidance/ta764</u> accessed 8 June 2022].