

Federal Department of Home Affairs

Federal Office of Public Health FOPH Health and Accident Insurance Directorate Section Health Technology Assessment

Health Technology Assessment (HTA)

Scoping Report

Title	Palbociclib (Ibrance®) for the treatment of hormone receptor (HR)- positive, human epidermal growth factor (HER2)-negative advanced breast cancer
Author/Affiliation	Heidi Stürzlinger, Richard Pentz, Ingrid Rosian-Schikuta, GÖ For- schungs- und Planungsgesellschaft mbH; Irmgard Frühwirth, external medical expert; Robert Emprechtinger, State of Health, external statisti- cal consultant

Technology	Palbociclib (Ibrance®)		
Date	14 July 2020		
Type of Technology	Pharmaceuticals		

Executive Summary (max. 250 words):

Inhibitors of cyclin-dependent kinases 4/6 (CDK4/6) are a relatively recent addition to the treatment options available for patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer. Three CDK4/6 inhibitors – palbociclib, ribociclib and abemaciclib – are now available in Switzerland. The clinical and economical effective-ness of palbociclib has been questioned.

This scoping report evaluates the feasibility of a health technology assessment (HTA), assessing 1) the efficacy, effectiveness, safety and cost effectiveness of palbociclib compared with other CDK4/6 inhibitors and endocrine therapies, 2) the costs of palbociclib and the budget impact of a potential change in reimbursement status of palbociclib, 3) related legal, social, ethical and organisational issues.

Few clinical trials compare palbociclib with relevant alternative treatments. The available body of evidence from randomised controlled trials for the assessment of efficacy, effectiveness and safety appears sufficient to perform indirect comparisons through network meta-analysis. Further, a number of observational studies provide additional safety data on palbociclib.

To assess cost effectiveness, it will be necessary to adapt and substantially extend an existing Swiss model. Cost data and other relevant model parameters will have to be gathered from several sources. The budget impact analysis will include changes in overall drug costs; several scenarios are proposed in consultation with the FOPH and clinical experts.

Sufficient literature is available to address the defined relevant ethical and organisational issues. Evidence to appropriately address the defined relevant legal and social issues is scarce or lacking. Following the expert review, the suggested PICO, the title and the key questions for the full HTA report have been extended to include all CDK 4/6 inhibitors as interventions. For reasons of feasibility the number of comparators has been reduced and it was decided not to address legal and social issues.

Zusammenfassung:

Inhibitoren der cyclinabhängigen Kinasen 4 und 6 (CDK4/6) sind eine relativ neue Therapieoption für Patientinnen mit einem lokal fortgeschrittenen oder metastasierenden hormonrezeptorpositiven, für den humanen epidermalen Wachstumsfaktor-Rezeptor 2 negativen Mammakarzinom. Unterdessen sind in der Schweiz drei CDK4/6-Inhibitoren verfügbar: Palbociclib, Ribociclib und Abemaciclib. Die klinische Wirksamkeit und die Wirtschaftlichkeit von Palbociclib wurden in Frage gestellt.

Mit diesem Scoping-Bericht wird die Durchführbarkeit einer Gesundheitstechnologiebewertung (HTA) abgeklärt, mit der die folgenden Aspekte beurteilt werden: 1) die Wirksamkeit unter idealen Bedingungen und unter Alltagsbedingungen sowie die Verträglichkeit und die Kosteneffizienz von Palbociclib im Vergleich zu anderen CDK4/6-Inhibitoren und Hormontherapien, 2) die Kosten von Palbociclib und die budgetären Auswirkungen einer potenziellen Änderung des Kostenerstattungsstatus von Palbociclib, 3) die damit verbundenen rechtlichen, sozialen, ethischen und organisatorischen Fragen.

Es liegen nur wenige klinische Studien vor, in denen Palbociclib mit anderen einschlägigen Therapien verglichen wird. Die verfügbaren evidenzbasierten Daten aus randomisierten kontrollierten Studien zur Bewertung der Wirksamkeit unter idealen Bedingungen und unter Alltagsbedingungen sowie der Verträglichkeit erscheinen ausreichend, um über Netzwerk-Metaanalysen indirekte Vergleiche durchzuführen. Zudem werden mehrere Beobachtungsstudien zusätzliche Daten zur Verträglichkeit von Palbociclib liefern.

Zur Beurteilung der Kosteneffizienz muss ein bestehendes schweizerisches Modell angepasst und erheblich erweitert werden. Die Daten zu den Kosten sowie weitere relevante Modellparameter müssen aus verschiedenen Quellen zusammengetragen werden. In die Ausgaben-Einfluss-Analyse werden Veränderungen der gesamten Arzneimittelkosten aufgenommen; in Absprache mit dem BAG und klinischen Expertinnen und Experten werden verschiedene Szenarien vorgeschlagen.

Für die Bearbeitung der festgelegten relevanten ethischen und organisatorischen Fragen ist ausreichend Literatur verfügbar. Hingegen liegen nur wenige oder gar keine evidenzbasierten Daten vor, um die festgelegten relevanten rechtlichen und sozialen Fragen angemessen anzugehen.

Nach der Überprüfung durch Expertinnen und Experten wurden das vorgesehene PICO-Schema, der Titel und die zentralen Fragen für den ausführlichen HTA-Bericht ergänzt, indem alle CDK4/6-

Inhibitoren als Interventionen aufgenommen wurden. Im Hinblick auf die Durchführbarkeit wurde die Zahl der Vergleichssubstanzen verringert. Zudem wurde beschlossen, auf die Bearbeitung der rechtlichen und sozialen Fragen zu verzichten.

Synthèse:

Les inhibiteurs des kinases dépendantes des cyclines 4/6 (inhibiteurs CDK 4/6 pour *cyclin-dependant kinases*) constituent une nouvelle option thérapeutique pour les patientes atteintes d'un cancer du sein positif aux récepteurs hormonaux, négatif aux récepteurs 2 du facteur de croissance épidermique humain et localement avancé ou métastatique. Trois inhibiteurs CDK 4/6 – le palbociclib, le ribociclib et l'abémaciclib – sont désormais disponibles en Suisse. L'efficacité clinique et l'économicité du palbociclib ont été remises en question.

Le présent rapport détermine la faisabilité d'une évaluation des technologies de la santé (ETS ou HTA pour *health technology assessment*) pour apprécier 1) l'efficacité, la sécurité et l'économicité du palbociclib en comparaison avec d'autres inhibiteurs CDK 4/6 et traitements endocriniens, 2) les coûts du palbociclib et l'impact budgétaire d'un éventuel changement dans son remboursement, 3) les aspects légaux, sociaux, éthiques et organisationnels y relatifs.

Peu d'essais cliniques ont comparé le palbociclib à des traitements alternatifs pertinents. Le corpus de preuves issues d'essais contrôlés randomisés concernant l'efficacité théorique et pratique ainsi que la sécurité semble suffisant pour effectuer des comparaisons indirectes à l'aide de méta-analyses en réseau. De plus, diverses études d'observation fournissent des données supplémentaires sur la sécurité du palbociclib.

En ce qui concerne l'évaluation de l'économicité, il sera nécessaire d'adapter et d'étendre considérablement un modèle suisse existant. Les données sur les coûts devront être réunies à partir de plusieurs sources, de même que divers paramètres de modèles pertinents. L'analyse de l'impact budgétaire inclura des changements dans les coûts totaux des médicaments ; elle proposera plusieurs scénarios, en concertation avec l'OFSP et les experts cliniques.

La littérature est suffisamment abondante pour aborder les aspects éthiques et organisationnels pertinents tels que définis. Il n'existe en revanche que peu, voire pas de documentation permettant de répondre de manière appropriée aux questions légales et sociales définies.

Conformément à l'évaluation des experts, le protocole PICO, le titre et les questions clés du rapport ETS complet ont été étendus à tous les inhibiteurs CDK 4/6. Pour des raisons de faisabilité, il a été décidé de réduire le nombre de comparateurs et de ne pas aborder les aspects légaux et sociaux.

Sintesi:

Gli inibitori delle chinasi ciclina-dipendenti (CDK4/6) rappresentano un'opzione di trattamento relativamente recente per pazienti con carcinoma mammario localmente avanzato o metastatico positivo al recettore degli ormoni e negativo al recettore 2 per il fattore di crescita epidermico umano. In Svizzera sono disponibili tre inibitori delle CDK4/6: palbociclib, ribociclib e abemaciclib. L'efficacia clinica ed economica di palbociclib è stata messa in discussione.

Il presente rapporto di scoping valuta la fattibilità di un Health Technology Assessment (HTA) che verifichi 1) efficacia, sicurezza ed efficienza dal punto di vista dei costi di palbociclib rispetto ad altri inibitori delle CDK4/6 e terapie endocrine; 2) il costo di palbociclib e le ripercussioni sul budget di un potenziale cambiamento dello stato della rimunerazione di palbociclib; 3) questioni collegate di natura legale, sociale, etica e organizzativa.

Pochi studi clinici confrontano palbociclib a trattamenti alternativi rilevanti. Gli elementi di prova disponibili derivanti da studi controllati randomizzati per la valutazione dell'efficacia, dell'efficienza e della sicurezza appaiono sufficienti per effettuare confronti indiretti attraverso meta-analisi «a rete». Inoltre, una serie di studi di osservazione fornisce ulteriori dati sulla sicurezza di palbociclib.

Per valutare l'efficienza dal punto di vista dei costi sarà necessario adattare ed estendere considerevolmente un modello svizzero esistente raccogliendo da varie fonti dati relativi ai costi e altri parametri del modello rilevanti. L'analisi dell'impatto sul budget comprenderà le variazioni dei costi complessivi del medicamento; d'intesa con l'UFSP ed esperti clinici, saranno proposti diversi scenari.

La letteratura disponibile è sufficiente per rispondere alle questioni di natura etica e organizzativa rilevanti e definite. Tuttavia, scarseggiano o sono assenti evidenze per affrontare in maniera appropriata le questioni di natura legale e sociale.

Come suggerito dalla revisione degli esperti, lo schema PICO proposto, il titolo e le domande chiave per il rapporto HTA completo sono stati estesi per includere tutti gli inibitori delle CDK4/6 impiegati come trattamento. Per motivi di fattibilità, il numero di comparatori è stato ridotto e si è deciso di non affrontare le questioni legali e sociali.

Table of contents

1	Poli	cy question and context	13
2	Res	earch question	14
3	Med	lical background	15
4	Tec	hnology	19
4	4.1	Technology description	19
2	4.2	Alternative technologies	20
5	PIC	O	22
6	HTA	A key questions	24
6	5.1	Additional question(s)	25
7	Met	hodology literature search	26
7	7.1	Databases and search strategy	26
7	7.2	Other sources	31
7	7.3	Quality of evidence assessment	32
8	Syn	thesis of evidence base	33
8	3.1	Evidence base pertaining to efficacy, effectiveness and safety	33
8	3.2	Evidence base pertaining to costs, cost effectiveness and budget impact	50
8	3.3	Evidence base pertaining to legal, social and ethical issues	57
8	3.4	Evidence base pertaining to organisational issues	66
9	Fea	sibility HTA	72
10	Outl	look	75
11	Refe	erences	80
12	Арр	endices	94
	12.1	Search strings for clinical effectiveness and safety (Palbociclib versus comparators)	94

12.2	Search strings for safety (extended analysis), health economics as well as	
	ethical, social, legal and organisational aspects	112
12.3	List of countries from which patients were recruited in the included RCTs	117
12.4	Preliminary quality appraisal of included RCTs	118
12.5	Quality assessment of included economic studies	120
12.6	Ongoing studies	127

List of tables

Table 1: List of preparations of the assessed interventions available in Switzerland	
Table 2: PICO 1	
Table 3: PICO 2	
Table 4: Selection criteria for the systematic review of clinical effectiveness and safety	
Table 5: Selection criteria for the extended safety assessment of PAL	
Table 6: Selection criteria for the economic review	
Table 7: Evidence table for included RCTs with sufficient data – refers to HTA key questions 1-436	
Table 8: Evidence table for RCTs for which supplementary data needs to be requested – refers to H	ΓA
key questions 1-4	
Table 9: Evidence table for extended safety analysis of PAL – refers to HTA key questions 3 and 4	
Table 10: Evidence table for economic studies – refers to HTA key questions 5-7	
Table 11: Evidence table for systematic reviews on ethical issues – refers to HTA key question 8 and	ł
ethical issue Subsection 6.1.1 62	
Table 12: Evidence table for other publication types on ethical issues – refers to HTA key question 8	
and ethical issue Subsection 6.1.1 64	
Table 13: Evidence table for observational studies on organisational issues – refers to HTA key	
question 9 and organisational issue Subsection 6.1.3	
Table 14: Evidence table for narrative reviews on organisational issues - refers to HTA key question	9
and organisational issue Subsection 6.1.3	

Table 15: Evidence table for guidelines on organisational issues – refers to HTA key question 9 a	and
organisational issue Subsection 6.1.370)
Table 16: Revised PICO 1	
Table 17: Revised PICO 2	,
Table 18: Search results for clinical effectiveness and safety (Palbociclib versus comparators)11	2
Table 19: Search results for safety (extended analysis), health economics, ethical, social, legal a	ind
organisational aspects 117	
Table 20: Preliminary quality assessment of included RCTs 118	ì
Table 21: Galve-Calvo et al. 2018 ¹⁵¹ 120	I
Table 22: Mamiya et al. 2017 ⁷	
Table 23: Matter-Walstra et al. 2016 ⁸ and Matter-Walstra et al. 2017 ¹⁵⁴ 122	
Table 24: Mistry et al. 2018 ¹⁵² 123	i
Table 25: Raphael et al. 2017 ¹⁵³ 124	
Table 26: Zhang / Long 2019 ¹⁵⁵ 125	ì
Table 27: Zhang et al. 2019 ¹⁵⁶ 126	i
Table 28: Characteristics of relevant ongoing studies 127	,

List of figures

Figure 1: Diagnosis and staging of LA/MBC 17	7
Figure 2: Treatment of HR+/HER2- LA/MBC 18	}
Figure 3: PRISMA flow chart for clinical effectiveness and safety studies (PAL versus comparato	ors) –
refers to HTA key questions 1-4	ł
Figure 4: PRISMA flow chart for additional safety studies (extended analysis) – refers to HTA ke	y
questions 3 and 435	5
Figure 5: Preliminary quality assessment of included RCTs)
Figure 6: PRISMA flow chart for economic studies – refers to HTA key questions 5-7 51	ļ
Figure 7: PRISMA flow chart for publications on legal issues - refers to HTA key question 8 and	legal
issue Subsection 6.1.458	3

Figure 8: PRISMA flow chart for publications on social issues - refers to HTA key question 8 ar	nd
social issue Subsection 6.1.25	59
Figure 9: PRISMA flow chart for publications on ethical issues – refers to HTA key question 8 a	and
ethical issue Subsection 6.1.1 6	30
Figure 10: PRISMA flow chart for publications on organisational issues – refers to HTA key que	estion 9
and organisational issue Subsection 6.1.36	37

Abbreviations and acronyms

ABC	Advanced breast cancer			
AGO	Arbeitsgemeinschaft Gynäkologische Onkologie e.V.			
AI	Aromatase inhibitor			
CDK	Cyclin-dependent kinase			
CTCAE	Common Terminology Criteria for Adverse Events			
ESO-ESMO	European School of Oncology – European Society for Medical Oncology			
ET	Endocrine therapy			
FOPH	Federal Office of Public Health			
GRADE	Grading of Recommendations, Assessment, Development and Evaluations			
HR	Hazard ratio			
HR+	Hormone receptor-positive			
HER2-	Human epidermal growth factor receptor 2-negative			
HrQoL	Health related quality of life			
HTA	Health Technology Assessment			
IQWiG	Institute for Quality and Efficiency in Health Care			
LABC	Locally advanced breast cancer			
LA/MBC	Locally advanced or metastatic breast cancer			
LHRH	Luteinising hormone-releasing hormone			
LYG	Life-year gained			
MA	Meta-analysis			
MBC	Metastatic breast cancer			
N.A.	Not applicable			
NMA	Network meta-analysis			
NRS	Non-randomised study			
OKP	Mandatory health insurance (obligatorische Krankenpflegeversicherung)			
OS	Overall survival			
PFS	Progression-free survival			
PICO	Patients, Interventions, Comparators, Outcomes			
PICO (EO)	Population, intervention, comparator, outcome (economic outcomes)			
PR	Progesterone receptor			
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses			
PROM	Patient reported outcome			
QALY	Quality adjusted life-year			
QoL	Quality of life			
Rb	Functional retinoblastoma			
RCT	Randomised controlled trial			
SL	List of specialties (Spezialitätenliste)			
SR	Systematic review			
SERD	Selective oestrogen receptor degrader			
SERM	Selective oestrogen receptor modulator			
TTP	Time to progression			

Short forms for interventions

ABE	Abemaciclib
ANA	Anastrozole
EXE	Exemestane
LET	Letrozole
FUL	Fulvestrant
PAL	Palbociclib
pbo	Placebo
RIB	Ribociclib
RoB	risk of bias
ТАМ	Tamoxifen

Objective of the HTA scoping report

The objective of the scoping report is to conduct a systematic literature search and to synthesise the available evidence base addressing the main health technology assessment (HTA) domains, i.e. clinical effectiveness/safety, costs/budget impact/cost effectiveness, legal/social/ethical and organisational issues. In the report, the analytical methods are described that are to be used if an HTA is pursued. Based on the quantity and quality of the extracted evidence, the feasibility of pursuing an HTA is judged. An analysis of the individual study outcomes is not the objective of the scoping report.

1 Policy question and context

Each HTA topic entails a policy and a research question. In healthcare, a *policy question* is a request to regulate a reimbursement policy and is aimed at securing financing of health technologies. Such a request, related to a particular health technology, typically addresses an existing controversy around a technology. The controversy is brought forward by the applicant of the HTA topic. This HTA report addresses the following policy question:

In 2017, the Swiss Agency for Therapeutic Products (Swissmedic) granted marketing authorisation for palbociclib (PAL) for the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative locally advanced (LABC) or metastatic breast cancer (MBC) in combination with an aromatase inhibitor (AI) or in combination with fulvestrant (FUL) in women who had received prior endocrine therapy (ET). In pre- or perimenopausal women, ET should be combined with a luteinising hormone-releasing hormone (LHRH) agonist.¹ Currently, the mandatory health insurance (OKP) reimburses PAL 1) as a first-line treatment in combination with AIs if the disease-free interval has lasted for more than 12 months after completion of a neoadjuvant or adjuvant therapy with anastrozole (ANA) or letrozole (LET); 2) in combination with FUL as a first-line treatment for relapse during neoadjuvant or adjuvant ET or within 12 months of completion of adjuvant ET; 3) in combination with FUL as a second-line therapy after ET was already used as a first-line therapy in the metastatic stage.

Results from clinical studies in patients with HR+/HER2- locally advanced or metastatic breast cancer (LA/MBC) suggest that PAL in combination with FUL prolongs progression-free survival² but has no statistically significant effect on the overall survival (OS)³ of these patients. This would render PAL the only drug in its class that has not been shown to statistically significantly prolong OS in combination with FUL. Furthermore, conflicting data concerning the role of PAL in improving health-related quality of life and the incidence of haematological adverse events during PAL therapy exist.^{2 4-6} Lastly, different HTA reports and cost effectiveness studies in other countries suggest an unfavourable cost effectiveness ratio for PAL in combination with LET or FUL when compared with LET or FUL monotherapy.⁷⁻⁹ Therefore, it was proposed that an HTA is conducted to review the efficacy, safety and cost effectiveness of PAL compared with similar drugs within the same drug class or endocrine monotherapy for treating patients with HR+/HER2- LA/MBC.

2 Research question

To answer a policy question, the research question has to be defined and answered first. The **research question** is an answerable inquiry into the HTA topic, which requires data collection and analysis. Research questions are specific and narrow. This HTA report addresses the following research question:

What is the efficacy, effectiveness, safety, cost effectiveness and budgetary impact of PAL 1) in combination with an AI in women with HR+/HER2- LA/MBC who have not received prior ET for advancedstage disease and 2) in combination with FUL in women with disease progression following ET for advanced-stage disease, compared with alternative treatment options (as defined, for example, in guidelines)?

Are there any legal, social, ethical or organisational issues associated with the use of PAL in this context?

3 Medical background

Breast cancer commonly develops from an uncontrolled growth of epithelial cells lining the milk ducts or lobules, or both, caused by dysregulation of the cell cycle. Aberrant hormone and growth factor signalling also contributes to the development of breast cancer. Lifestyle-related factors like decreased childbearing, an increase in obesity, decreased physical activity and others may play a role in increasing breast cancer rates as well.¹⁰

Breast cancer is the most commonly diagnosed cancer in women (in both transitioned and transitioning countries), with over 5'700 newly diagnosed cases every year in Switzerland. It is also the leading cause of cancer deaths worldwide in women. In Switzerland, around 1'400 patients die each year from the disease.¹¹ (These numbers derive from an epidemiologic analysis of the years 2008 to 2012.)

Initial signs of breast cancer may include a lump in the breast, a change in the size or shape of the breast, skin irritation, and breast or nipple pain. The stage of breast cancer is determined by the cancer's characteristics, such as tumour size and receptor status. Primary invasive cancers are investigated as a matter of routine for expression of oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). Since 2007, standardised methods have been implemented for testing HER2 expression in invasive breast cancer to improve the accuracy of HER2 testing and its utility as a predictive marker.¹² Tumours expressing either ER, PR or both are termed hormone receptor (HR)-positive, with HR-positive cancers accounting for approximately 65 per cent and 80 per cent of breast cancers in pre- and postmenopausal women, respectively.¹³ Breast cancers are then classified with respect to the presence or absence of receptors as luminal A (HR-positive and HER2-negative), luminal B (HR-positive and HER2-positive), HER2-enriched (HR-negative and HER2-positive) or basal-like (HR-negative and HER2-negative; triple negative breast cancer).¹⁴ ¹⁵ HR-positive and HER2-negative; triple negative breast cancer).¹⁴ ¹⁵ HR-positive and HER2-negative; negative (luminal A type) is the most common subtype, accounting for 78 per cent of all breast cancers.¹⁶

Tumour biology influences the prognosis for breast cancer patients and determines treatment options. The preferred treatment for HR+/HER2- breast cancers is ET. Traditional ET agents include the selective oestrogen receptor modulator (SERM) tamoxifen (TAM), the selective oestrogen receptor degrader (SERD) FUL as well as several AIs, including the steroidal AI exemestane (EXE) and the non-steroidal aromatase inhibitors (NSAIs) LET and ANA.¹⁷ Even with early-stage disease and optimal treatment, many patients will develop recurrent or progressive disease and ultimately require treatment with cytotoxic chemotherapeutics.¹⁸ Approximately 20 to 30 per cent of patients with early-stage disease will relapse with distant metastatic disease.^{19 20}

Advanced breast cancer (ABC) generally comprises both locally advanced breast cancer (LABC) and metastatic breast cancer (MBC).²¹ In this context, according to the guidelines of the European School

of Oncology (ESO) and the European Society for Medical Oncology (ESMO), LABC is defined as inoperable locally advanced disease (stage IIIB, IIIC) that has not yet spread to distant sites.²² Metastatic breast cancer (MBC) is a treatable but incurable disease with a median overall survival (OS) of around 3 years and a 5-year OS rate of only around 25 per cent.^{23 24} As the research questions for the planned HTA apply equally to LABC and MBC, we will refer to both disease manifestations collectively using the term LA/MBC. Current treatments for LA/MBC focus on prolonging life, relieving symptoms and improving and maintaining the quality of life (QoL). Treatment-associated toxicities must be outweighed by the potential benefits.¹⁹

According to clinical guidelines relevant for the Swiss context, endocrine-based therapy (including combination therapies with CDK4/6-inhibitors) should be considered first choice in women with hormone receptor-positive LA/MBC (HER2-negative), irrespective of their menopausal status.²⁵ Monochemotherapy is the treatment of choice in slowly progressing disease or if secondary resistance to ET arises. Combination chemotherapy is recommended in the case of a visceral crisis or if clinical remission needs to be achieved urgently.²⁶

Diagnostic and treatment algorithms for LA/MBC taken from the ESO–ESMO International Consensus Guidelines are provided in Figure 1 and Figure 2, respectively.²¹

Figure 1: Diagnosis and staging of LA/MBC

CT=computed tomography; ER=oestrogen receptor; HER2=human epidermal growth factor 2; LABC=locally advanced breast cancer; MBC=metastatic breast cancer; PET-CT=positron emission computed tomography; PgR=progesterone receptor

Source: Modified from Cardoso et al. 2018²¹

Al=aromatase inhibitor; CDK=cyclin-dependent kinase; ET=endocrine therapy; FUL=fulvestrant; HR=hormone receptor; HER2=human epidermal growth factor 2; TAM=tamoxifen

Source: Modified from Cardoso et al. 2018²¹

4 Technology

4.1 Technology description

In recent years, a novel class of drugs that prevent cell cycle progression has been tested for the treatment of LA/MBC. This class of drugs targets the two key cell cycle regulators cyclin-dependent kinases 4 and 6 (CDK4/6) and, to date, comprises three small-molecule inhibitors: palbociclib (PAL), ribociclib (RIB) and abemaciclib (ABE). The effects of CDK4/6 inhibitors are dependent on the presence of a functional retinoblastoma (Rb) protein.²⁷ Highly selective oral CDK4/6 inhibitors like PAL can inhibit the proliferation of Rb-positive tumour cells and show dose-dependent growth inhibition in animal models of HR+ breast cancer.^{28 29}

PAL (Ibrance®) is available as capsules (75 mg, 100 mg and 125 mg). The recommended dose is 125 mg once a day for 21 consecutive days, followed by a 7-day break to complete a 28-day treatment cycle.³⁰ Treatment should be started and supervised by a doctor experienced in the use of cancer medication. PAL is indicated for the treatment of HR+/HER2- LA/MBC in combination with an AI or in combination with FUL in women who have received prior ET. In pre- or perimenopausal women, ET should be combined with an LHRH agonist.¹ Treatment is continued as long as there is a clinical benefit and the side effects are tolerable. If treatment-associated side effects occur, treatment may need to be interrupted or stopped or the dose may need to be reduced.

The most common severe side effects of PAL are reduced blood cell counts (neutropenia, leukopenia, anaemia), tiredness and infections. Contraindications are hypersensitivity to the active substance or to any of the excipients and use of preparations containing St. John's Wort. The product contains lactose; therefore, patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not be treated with PAL. Women of childbearing potential or their male partners must use a highly effective method of contraception while taking this medicine.³⁰

PAL is primarily metabolised by Cytochrome P450 3A4 (CYP3A4) and sulfotransferase 2A1 (SULT2A1).³¹ Concomitant treatment with strong inhibitors of CYP3A4 may lead to increased toxicity and their use during treatment with PAL should be avoided.³² If co-administration with a strong CYP3A4 inhibitor is unavoidable, a dose reduction to 75 mg once daily is required. Co-administration of CYP3A4 inducers may lead to decreased PAL exposure and consequently to a risk of inefficacy. Therefore, concomitant use of PAL with strong CYP3A4 inducers should be avoided.³⁰

4.2 Alternative technologies

The recommended first-line treatment for HR+/HER2- LA/MBC is ET, which may be combined with a CDK4/6 inhibitor (see Figure 2). The different CDK4/6 inhibitors and ET agents approved in Switzerland are listed in Table 1.

The recommended dose of RIB is 600 mg per day, adhering to the same schedule as for PAL (28-day cycle), while the recommended dose of ABE is 150 mg continuously. The three CDK4/6 inhibitors have similar safety profiles but also some unique side effects.^{33 34} A high incidence of grade 3 and 4 neutropenia has been reported for PAL, RIB has a potential for QT interval prolongation, whereas ABE is associated with less haematological toxicity but more gastrointestinal symptoms and a higher rate of fatigue.³³

Different types of ET are available for breast cancer. They typically act either by lowering oestrogen levels or by inhibiting the pro-proliferative effect of oestrogen on breast cancer cells.

The oral SERM TAM acts as an oestrogen receptor antagonist in breast tissue. Commonly reported side effects of TAM include hot flashes, nausea, vaginal dryness and discharge. The recommended dose for the patient population studied in this report is 20 mg to 40 mg orally per day.

The SERD FUL achieves oestrogen receptor degradation and is administered by intramuscular injection. In the first month of treatment, the injections are given 2 weeks apart. After that, they are given once a month. The recommended dose of FUL is 500 mg per injection. Common side effects of FUL include injection site reactions (pain, swelling, redness), nausea, vomiting, loss of appetite, constipation, diarrhoea, muscle pain and musculoskeletal complaints.³⁵

Third-generation Als have become the standard of care for the treatment of postmenopausal women with HR+ LA/MBC. LET and ANA are non-steroidal Als that reversibly and competitively bind aromatase whereas EXE, a steroidal AI, irreversibly deactivates the enzyme. All three Als are taken orally once per day, with recommended doses of 1 mg for ANA, 2.5 mg for LET and 25 mg for EXE. The side effects of Als include hot flashes, weight gain, insomnia, musculoskeletal complaints, mood changes, vaginal dryness and vaginal discharge.

Substance class	ATC Code	Substance	Preparation	Authorisation holder	Reim- bursed by OKP
CDK4/6 inh.	L01XE33	Palbociclib	Ibrance	Pfizer AG	L*
CDK4/6 inh.	L01XE42	Ribociclib	Kisqali	Novartis Pharma Schweiz AG	L*
CDK4/6 inh.	L01XE50	Abemaciclib	Verzenios	Eli Lilly (Suisse) SA	L†
AI	L02BG06	Exemestane	Aromasin	Pfizer PFE Switzerland GmbH	yes
AI	L02BG06	Exemestane	Exemestan Devatis	Devatis AG	yes
AI	L02BG06	Exemestane	Exemestan Mylan	Mylan Pharma GmbH	yes
AI	L02BG06	Exemestane	Exemestan Sandoz	Sandoz Pharmaceuticals AG	yes
AI	L02BG04	Letrozole	Femara	Novartis Pharma Schweiz AG	yes
AI	L02BG04	Letrozole	Letrozol Devatis	Devatis AG	yes
AI	L02BG04	Letrozole	Letrozol Helvepharm	Helvepharm AG	yes
AI	L02BG04	Letrozole	Letrozol Labatec	Labatec Pharma SA	yes
AI	L02BG04	Letrozole	Letrozol Mepha	Mepha Pharma AG	no
AI	L02BG04	Letrozole	Letrozol Mylan	Mylan Pharma GmbH	yes
AI	L02BG04	Letrozole	Letrozol Sandoz	Sandoz Pharmaceuticals AG	yes
AI	L02BG04	Letrozole	Letrozol Teva	Teva Pharma AG	yes
AI	L02BG03	Anastrozole	Anastrozol Devatis	Devatis AG	yes
AI	L02BG03	Anastrozole	Anastrozol Helvepharm	Helvepharm AG	yes
AI	L02BG03	Anastrozole	Anastrozol Orion	Orion Pharma AG	yes
AI	L02BG03	Anastrozole	Anastrozol Sandoz	Sandoz Pharmaceuticals AG	yes
AI	L02BG03	Anastrozole	Anastrozol Teva	Teva Pharma AG	yes
AI	L02BG03	Anastrozole	Arimidex	AstraZeneca AG	yes
SERM	L02BA01	Tamoxifen	Nolvadex	AstraZeneca AG	yes
SERM	L02BA01	Tamoxifen	Tamec	Sandoz Pharmaceuticals AG	yes
SERM	L02BA01	Tamoxifen	Tamoxifen Farmos	Orion Pharma AG	yes
SERD	L02BA03	Fulvestrant	Faslodex	AstraZeneca AG	L‡
SERD	L02BA03	Fulvestrant	Fulvestrant Mylan	Mylan Pharma GmbH	no
SERD	L02BA03	Fulvestrant	Fulvestrant Sandoz	Sandoz Pharmaceuticals AG	L‡
SERD	L02BA03	Fulvestrant	Fulvestrant Teva	Teva Pharma AG	no

Table 1: List of pre	parations of the asse	ssed interventions ava	ailable in Switzerland
----------------------	-----------------------	------------------------	------------------------

Al=aromatase inhibitor; CDK4/6 inh.=cyclin-dependent kinase 4/6 inhibitor; L=limitation; OKP=mandatory health insurance; SERD=selective oestrogen receptor degrader; SERM=selective oestrogen receptor modulator; * Indicated in combination with an Al in patients who have not relapsed or progressed on prior ET and if ET monotherapy is not indicated. Indicated in combination with fulvestrant in patients who relapsed or progressed or progressed during or within 12 months after adjuvant ET or during ET for advanced-stage disease. † Same indications as palbociclib and ribociclib. In addition, indicated as monotherapy in patients who have relapsed or progressed during ET as well as during at least one chemotherapy regimen. ‡ Indicated for postmenopausal patients who have relapsed or progressed during treatment with a different ET agent

agent.

PICO 5

Note: During the expert review, the FOPH was strongly advised to include all CDK 4/6 inhibitors in their evaluation. The revised title, PICO and research questions suggested for the conduct of a full HTA are provided in Chapter 10.

Table 2: PICO 1

P:	Pre/peri- (under ovarian suppression) or postmenopausal women with HR+/HER2- LA/MBC who have not relapsed or progressed during or within 12 months after adjuvant ET and have not received prior ET for advanced-stage disease						
I:	PAL (Ibrance®) in combination with an AI (ANA, LET or EXE)						
C:	 AI (ANA, LET or EXE) FUL TAM RIB in combination with an AI (ANA, LET or EXE) ABE in combination with an AI (ANA, LET or EXE) RIB in combination with FUL ABE in combination with FUL PAL in combination with FUL 						
O:	 Efficacy and effectiveness HrQoL (critical outcome) OS (critical outcome) PFS (important outcome*) Safety Treatment-related AEs (critical outcome) Treatment discontinuation due to AEs (critical outcome) Economics Costs for complete treatment path including costs after stopping treatment with PAL Costs of (severe) side effects Budget impact ICER, incremental/total costs, QALYs and LYG 						

ABE=abemaciclib; AE=adverse event; AI=aromatase inhibitor; ANA=anastrozole; ET=endocrine therapy; EXE=exemestane; FUL=fulvestrant; HER2=human epidermal growth factor receptor 2; HR=hormone receptor; HrQoL=health-related quality of life; ICER =incremental cost effectiveness ratio; LET=letrozole; LYG=life years gained; OS=overall survival; PAL=palbociclib; PFS=progression-free survival; PICO=population, intervention, comparator, outcome; PROM=patient-reported outcome measure; QALY=quality-adjusted life year; RIB=ribociclib; TAM=tamoxifen * PFS can be seen as a surrogate parameter and was therefore ranked as important (but not critical).

Table 3: PICO 2

P:	Pre/peri- (under ovarian suppression) or postmenopausal women with HR+/HER2- LA/MBC who have relapsed or progressed during or within 12 months after adjuvant ET or during ET for advanced-stage disease						
I:	PAL (Ibrance®) in combination with FUL						
C:	 FUL AI (ANA, LET or EXE) TAM RIB in combination with FUL ABE in combination with FUL RIB in combination with an AI (ANA, LET or EXE) ABE in combination with an AI (ANA, LET or EXE) PAL in combination with an AI (ANA, LET or EXE) 						
O:	 Efficacy and effectiveness HrQoL (critical outcome) OS (critical outcome) PFS (important outcome*) Safety Treatment-related AEs (critical outcome) Treatment discontinuation due to AEs (critical outcome) Economics Costs for complete treatment path including costs after stopping treatment with PAL Costs of (severe) side effects Budget impact ICER, incremental/total costs, QALYs and LYG 						

ABE=abemaciclib; AE=adverse event; AI=aromatase inhibitor; ANA=anastrozole; ET=endocrine therapy; EXE=exemestane; FUL=fulvestrant; HER2=human epidermal growth factor receptor 2; HR=hormone receptor; HrQoL=health-related quality of life; ICER=incremental cost effectiveness ratio; LET=letrozole; LYG=life years gained; OS=overall survival; PAL=palbociclib;; PFS=progression-free survival; PICO=population, intervention, comparator, outcome; PROM=patient-reported outcome measure; QALY=quality-adjusted life year; RIB=ribociclib; TAM=tamoxifen * PFS can be seen as a surrogate parameter and was therefore ranked as important (but not critical).

6 HTA key questions

Note: During the expert review, the FOPH was strongly advised to include all CDK 4/6 inhibitors in their evaluation. The revised title, PICO and research questions suggested for the conduct of a full HTA are provided in Chapter 10.

To evaluate the technology, the following key questions were addressed covering central HTA domains as designated by the EUnetHTA Core Model® (clinical efficacy and effectiveness, safety, costs, cost effectiveness, budget impact, legal, social, ethical and organisational aspects):

- Is PAL in combination with an AI (ANA, LET or EXE) in women with HR+/HER2- LA/MBC who have not received prior ET for advanced-stage disease effective/efficacious compared with alternative treatment options*?
- 2. Is PAL in combination with FUL in women with HR+/HER2- LA/MBC with disease progression/recurrence during/after prior ET effective/efficacious compared with alternative treatment options*?
- 3. Is PAL in combination with an AI (ANA, LET or EXE) in women with HR+/HER2- LA/MBC who have not received prior ET for advanced-stage disease safe compared with alternative treatment options*?
- 4. Is PAL in combination with FUL in women with HR+/HER2- LA/MBC with disease progression/recurrence during/after prior ET safe compared with alternative treatment options*?
- 5. What are the costs of PAL?
- 6. What is the budget impact of a potential change in the reimbursement status of PAL in the two above-mentioned combinations and indications†?
- 7. How cost-effective is PAL in the two above-mentioned combinations and indications compared with alternative treatment options*?
- 8. Are there legal, social or ethical issues related to PAL in the two above-mentioned combinations and indications‡?
- 9. Are there organisational issues related to PAL in the two above-mentioned combinations and indications‡?

* We defined alternative treatment options in accordance with international guidelines and in consultation with a Swiss clinical oncology expert which are listed in detail in PICO (see Chapter 5).

† The scenarios that might have to be analysed are to be defined during conduct of a full HTA based on the results of the cost effectiveness analysis.

‡ We refined and specified this question during the scoping phase in consultation with the FOPH; see Section 6.1 for detailed questions on the issue(s).

6.1 Additional question(s)

Note: During the expert review, the FOPH was strongly advised to include all CDK 4/6 inhibitors in their evaluation. The revised title, PICO and research questions suggested for the conduct of a full HTA are provided in Chapter 10.

6.1.1 Ethical issues

In consultation with the FOPH, we identified the following question from the EUnetHTA Core Model® ontology as being relevant.³⁶ The original question was rephrased according to PICO.

What are the ethical consequences of the choice of endpoints in the assessment as well as in the included clinical studies?

6.1.2 Social issues

In consultation with the FOPH, we identified the following question from the EUnetHTA Core Model® ontology as being relevant.³⁶ The original question was rephrased according to PICO.

What expectations and wishes do patients have with regard to PAL combination therapy (either with an AI or with FUL as indicated) and possible alternative treatment options?

6.1.3 Organisational issues

In consultation with the FOPH, we identified the following question from the EUnetHTA Core Model® ontology as being relevant.³⁶ The original question was rephrased according to PICO.

How does PAL combination therapy (either with an AI or with FUL as indicated) modify the need for other technologies and use of resources?

6.1.4 Legal issues

With respect to legal issues, the FOPH raised the following question as being relevant:

What are the consequences of a disinvestment decision regarding patient access (for example, reimbursement "on a case-by-case basis" according to article 71a-d of the Swiss regulation on health insurance)?³⁷

7 Methodology literature search

7.1 Databases and search strategy

7.1.1 Palbociclib versus comparators: clinical effectiveness and safety

7.1.1.1 Systematic literature search

We performed systematic literature searches in the following databases: Ovid MEDLINE, EMBASE, The Cochrane Library and CRD. Ongoing studies were identified automatically through the inclusion of Cochrane CENTRAL (as part of The Cochrane Library), which contains the entries from ClinicalTrials.gov and the International Clinical Trials Registry Platform (ICTRP; WHO registry), which in turn contains the entries from the EU Clinical Trials Register (EUCTR) and the International Standard Randomised Controlled Trial Number (ISRCTN) registry. The searches were built using the PICO framework. Search strings were applied on 'Population', 'Intervention' and 'Comparators'. The search was restricted to RCTs, meta-analyses (MAs) and systematic reviews (SRs) as well as to human subjects without restriction on date of publication. The searches in Ovid MEDLINE and EMBASE were restricted to publications in English, German or French. Searches for publications in English and German were conducted between 14 and 17 November 2019 and searches for publications in French between 24 and 27 January 2020. The search strings for the different databases are included in Appendix 12.1.

7.1.1.2 Selection procedure

RCTs were filed separately from SRs and MAs. Relevant RCTs were included in the synthesis of the evidence base regarding the assessment of clinical effectiveness and safety to be used in the planned network meta-analysis (NMA). Reference lists of relevant SRs and (N)MAs were reviewed for additional RCTs which might have been missed in the systematic literature search.

The search results from the different databases were compiled and organised in EndNote version X8.2. Automatic duplicate removal was performed and complemented with a manual check for remaining duplicates. The resulting list of publications was then uploaded in Covidence³⁸ and divided into two groups: articles published before or after 2007 (when standardised HER2-testing was implemented; see Chapter 3). Two reviewers independently screened the titles and abstracts of articles published from 2007 onwards and selected all potentially relevant articles for full-text review while articles that did not seem to contain relevant data were excluded (see Table 4 for selection criteria). Articles published up to 2006 were screened by one reviewer to identify studies that reported participants' HER2-status.

During the full-text acquisition phase, some articles that were found to be conference abstracts or published in a non-included language were excluded immediately by one reviewer. Two reviewers then independently assessed the relevance of the remaining full-text articles based on the inclusion and exclusion criteria (see Table 4). Discrepancies between the two reviewers regarding inclusion or exclusion reasons were discussed and decided among the reviewers. One reviewer coordinated this work and was responsible for documenting the selection process and compilation of articles in the final EndNote library. When several articles analysed the same patient cohort and presented identical outcome measures (interim analyses, for example), only the articles reporting data from the most recent cut-off date or the most complete data were included. Articles that analysed mixed cohorts (for example HER2+ and HER2- or different ETs within one study arm) were included if they provided reliable subgroup analyses. Articles that reported on mixed cohorts and did report the numbers of patients in each group (for example, numbers of HER2+ and HER2- patients) but did not provide separate outcome data or subgroup analyses were included on the proviso that additional data will have to be requested from the authors during the HTA phase.

Currently ongoing clinical trials that were identified through the searches in registries (see Subsection 7.1.1.1) were checked for relevance to the research questions of this HTA.

7.1.1.3 Inclusion and exclusion criteria

Table 4 lists the inclusion and exclusion criteria for selecting the studies to be included in a potentialNMA for the assessment of clinical effectiveness and safety.

Criteria	Inclusion	Exclusion	
Publication date	No restriction		
Country of study	All countries		
Language	English, German or French	Other language	
Publication type	Full study publication	Conference abstract, study protocol	
Study design/type	Randomised controlled trials (RCTs)	Other study type	
Intervention or com- parator at least one of the therapies has to be either intervention or comparator	 PAL, RIB or ABE in combination with AI (LET, ANA, EXE) or FUL AI (ANA, LET or EXE) FUL TAM 	No treatment of interest included e.g. PAL, RIB or ABE as monotherapy	
Study population	 HR+/HER2- inoperable LA/MBC Pre/peri- (under ovarian suppression) or postmenopausal women For PICO 1: no prior ET for advanced-stage disease For PICO 2: disease progression during/after ET for advanced-stage disease 	Other study population e.g. HR-, HER2+ or HER2 status un- known, early breast cancer, LABC ame- nable to curative operative treatment, pre/perimenopausal women without ovar- ian suppression, males	
Study outcomes Data on at least one of the outcomes listed in the PICO schemes must be reported		None of the defined study outcomes included	

Table 4: Selection criteria for the systematic review of clinical effectiveness and safety

ABE=abemaciclib; AI=aromatase inhibitor; ANA=anastrozole; EXE=exemestane; FUL=fulvestrant; HER2=human epidermal growth factor receptor 2; HR=hormone receptor; LET=letrozole; PAL=palbociclib; PICO=population, intervention, comparator, outcome; RCT=randomised controlled trial; RIB=ribociclib; TAM=tamoxifen

7.1.1.4 Data extraction

The study characteristics of the included publications were extracted and summarised using a data extraction template in Excel. Extracted items included: trial identifier, first article author, year of publication, population, interventions, reported outcomes and trial sponsor. One reviewer extracted study characteristics that were cross-checked by another reviewer. The individual publications were grouped by the clinical trials they reported on.

7.1.2 Palbociclib: extended safety assessment, economic, ethical, social, legal and organisational issues

7.1.2.1 Systematic literature search

To include all available evidence on PAL regarding safety (non-randomised studies such as cohort studies and case reports) as well as to cover the other five assessment domains, we conducted a second literature search. In this search we applied search strings on 'Population' and 'Intervention' to limit the search to breast cancer and PAL. There were no restrictions on study types or the date of publication. Literature searches were performed in the following databases: Ovid MEDLINE, EMBASE, TRIPdatabase, The Cochrane Library, Scopus and CRD using the PICO framework. The searches in Ovid MEDLINE, EMBASE and Scopus were restricted to publications in English, German or French. Searches for publications in English and German were conducted between 4 and 8 November 2019 and searches for publications in French between 21 and 24 January 2020. The search strings for the databases are included in Appendix 12.2.

A supplementary search in the EconLit database yielded no hits. The search strings for the search in EconLit are included in Appendix 12.2.4.

7.1.2.2 Selection procedure

The search results were compiled and organised in EndNote version X8.2. Automatic duplicate removal was performed and complemented with a manual check for remaining duplicates.

The titles and abstracts of the resulting list of publications were initially screened by one reviewer, who tagged publications that reported on relevant patient populations (see PICO) and on PAL indicating their relevance for specific assessment domains. This first overview supported the formulation of specific additional research questions (see Section 6.1). The initial selection of abstracts was then cross-checked by a second reviewer with regard to the selected research questions.

The second reviewer also oversaw the whole process and, in a second step, integrated publications from the literature search on clinical effectiveness described in Subsection 7.1.1 that were tagged as being relevant for the other domains (checked for duplicates). The resulting publications were organised into groups corresponding to the individual assessment domains. Full-text screening was then performed by the second reviewer and the results were checked by a third reviewer.

7.1.2.3 Inclusion and exclusion criteria

The inclusion and exclusion criteria regarding the extended safety assessment and economic studies are laid out in Table 5 and Table 6, respectively. With regard to ethical, social, organisational and legal issues, all articles that were deemed to give relevant information for one of the four selected research questions listed in Section 6.1 were included within the full-text review.

Criteria	Inclusion	Exclusion	
Language	English, German or French	Other language	
Country of study	All countries		
Study design/type	Observational studies and case re- ports/series reporting relevant outcomes*	Inappropriate study design e.g. narrative reviews, in-vitro studies	
Study population	HR+ LA/MBC	Other study population e.g. HR-, early breast cancer, males	
Study intervention	 PAL in combination with an AI (LET, ANA, EXE) or FUL PAL monotherapy 	Other intervention	
Study outcomes	Treatment-related AEsDiscontinuation due to AEs	None of the defined study outcomes included	

Table 5: Selection criteria for the extended safety assessment of PAL

AE=adverse event; AI=aromatase inhibitor; ANA=anastrozole; EXE=exemestane; FUL=fulvestrant; HER2=human epidermal growth factor receptor 2; HR=hormone receptor; LA=locally advanced; LET=letrozole; MBC=metastatic breast cancer; PAL=palbociclib * RCTs were tagged for inclusion in the clinical effectiveness and safety search (see Subsection 7.1.1) while SRs and MAs were tagged to be used as background information and for reference list screening.

Criteria	Inclusion	Exclusion	
Language	English, German or French	Other language	
Country of study	All countries		
Study design/type	Cost effectiveness or cost-utility studies, budget impact analyses	Other study type	
Study population	 HR+/HER2- inoperable LA/MBC Pre/peri- (under ovarian suppression) or post- menopausal women 	Other study population e.g. HR-, HER2+ or HER2 status unknown, early breast cancer, LABC amenable to curative oper- ative treatment, pre/perimenopau- sal women without ovarian sup- pression, males	
Study intervention	 PAL in combination with an AI (LET, ANA, EXE) or FUL 	Other intervention e.g. PAL monotherapy	
Study comparison (not applicable for budget impact anal- yses)	 AI (LET, ANA, EXE) FUL TAM RIB in combination with an AI (LET, ANA, EXE) or FUL ABE in combination with an AI (LET, ANA, EXE) or FUL 	Other comparator	
Study outcomes	 Costs for complete treatment path including costs after stopping treatment with PAL Costs of severe side effects Budget impact Incremental cost effectiveness ratio, incre- mental/total costs, QALYs and LYG 	None of the defined study out- comes included	

Table 6:	Selection	criteria for	the	economic	review

ABE=abemaciclib; AI=aromatase inhibitor; ANA=anastrozole; EXE=exemestane; FUL=fulvestrant; HER2=human epidermal growth factor receptor 2; HR=hormone receptor; LA=locally advanced; LET=letrozole; LYG=life years gained; MBC =metastatic breast cancer; PAL=palbociclib; QALY=quality-adjusted life years; RIB=ribociclib; TAM=tamoxifen

7.1.2.4 Data extraction

The study characteristics of the included publications were extracted and summarised by one reviewer using a data extraction template in Excel. Across all assessment domains, extracted items included: first author, year of publication and sponsor. Additional extracted items for the economic studies included: country, population, interventions, cost perspective and outcome measures. Additional extracted items for the other assessment domains included study design and relevant issues covered.

7.2 Other sources

The following additional sources were searched for relevant publications:

- EUnetHTA POP database (key word "palbociclib")
- Project database of the German Institute for Quality and Efficiency in Health Care (IQWiG) (key word "palbociclib")
- Reference lists of SRs and MAs

7.3 Quality of evidence assessment

A preliminary quality assessment of the included RCTs (see Subsection 7.1.1) was conducted by judging the risk of bias (RoB) in the following domains:

- random sequence generation
- allocation concealment
- blinding of participants and personnel
- blinding of outcome assessment.

The assessment was assisted by RobotReviewer, an open-source machine learning system for semiautomated RoB assessment.^{39 40} The RoB assessments generated by RobotReviewer were checked by a reviewer and modified if necessary. Out of a total of 152 assessments (4 RoB domains assessed in 38 publications whereby 6 publications could not be processed by RobotReviewer), 27 (17.8%) had to be modified by the human reviewer. The final RoB assessments are shown in Appendix 12.3. During the HTA phase, an extended assessment covering all RoB domains will be conducted by human reviewers using the Cochrane RoB tool version 2.⁴¹ In this preliminary quality assessment, only the outcome PFS/TTP was assessed. In the comprehensive quality assessment for the HTA report, outcomespecific RoB domains will be assessed for all included outcomes.

The quality of the included economic studies (see Subsection 7.1.2) was assessed using the Consensus Health Economic Criteria (CHEC) list.⁴²

8 Synthesis of evidence base

8.1 Evidence base pertaining to efficacy, effectiveness and safety

The evaluation of the overall effectiveness of the technology encompasses its efficacy, its effectiveness and its safety.

- Efficacy is the extent to which a specific health technology produces a beneficial, reproducible result under study conditions compared with alternative technologies (internal validity).
- Effectiveness is the extent to which a specific health technology, when applied in real-world circumstances in the target group, does what it is intended to do for a diagnostic or therapeutic purpose regarding the benefits compared with alternative technologies (external validity).
- Safety is a judgement of the harmful effects and their severity using the health technology. Relevant adverse events are those that result in death, are life-threatening, require inpatient hospitalisation or cause prolongation of existing hospitalisation (serious adverse events) and those that occur repetitively and the most frequent (highest rate).

8.1.1 PRISMA flow diagrams

Table 18 (Appendix 12.1.5) shows the number of hits retrieved through the systematic search described in Subsection 7.1.1.1 in MEDLINE, EMBASE, The Cochrane Library and CRD. After automatic removal of duplicates in Endnote, 9'739 hits remained. The remaining hits were further deduplicated manually and filtered for 1) RCTs and 2) SRs and (N)MAs, resulting in 8'894 RCTs and 845 SRs. Figure 3 shows the PRISMA flow chart for publications selected for the potential NMA of clinical effectiveness and safety.

Figure 3: PRISMA flow chart for clinical effectiveness and safety studies (PAL versus

comparators) - refers to HTA key questions 1-4

* Literature search efficacy, effectiveness and safety (RCTs).

+ Publications other than complete primary articles, for example: conference abstracts (except for conference abstracts reporting on PALOMA trials, which were also checked for relevant unique data), study protocols (which were collected separately and checked for relevant ongoing studies), letters to editors, book chapters. ‡ Articles presenting only data that is also presented in another, more complete or more recent article. || Of the 44 included RCTs, 13 are included on the condition that supplementary data can be obtained from the study authors during the HTA report.

¶ Refers to the literature search for safety (extended analysis) and health economics as well as ethical, social, legal and organisational aspects plus other sources described in Section 7.2.

Table 19 (Appendix 12.2.8) shows the number of hits retrieved through the systematic search described in Subsection 7.1.2.1 in MEDLINE, EMBASE, The Cochrane Library, CRD, Scopus and TRIP database. After removal of duplicates in Endnote, 1'107 hits remained. Figure 4 shows the PRISMA flow chart for publications selected for the extended safety assessment (see Subsection 7.1.2.1).

Figure 4: PRISMA flow chart for additional safety studies (extended analysis) – refers to HTA key questions 3 and 4

^{*} Literature search for safety (extended analysis) and health economics as well as ethical, social, legal and organisational aspects.

† Řefers to the literature search for efficacy, effectiveness and safety (RCTs) as well as to other sources described in Section 7.2.

8.1.2 Evidence tables

We sorted the selected relevant RCTs into two groups, based on whether they provide sufficient data to be included in a potential NMA (Table 7) or whether supplementary data need to be requested from the study authors (Table 8) (see Subsection 8.1.3 for further explanation). The extracted characteristics of studies included for the extended safety analysis of PAL are presented in Table 9.

Trial	Author Year	Size* (pts)	Population		Intervention	Compositor	Outcome measurest	Champen
Triai			Prior ET†	HER2	Intervention	Comparator	Outcome measures‡	Sponsor
NCT00721409 PALOMA-1	Finn et al. 2017 ⁴³	165	unclear	negative	PAL 125 mg + LET 2.5 mg	LET 2.5 mg	OS (median, 95% CI; HR, 95% CI, P)	Pfizer
(Phase 2)	Bell et al. 2016 ⁴⁴						QoL (BPI, mean, SE, P)	
	Finn et al. 2015 ⁴⁵						PFS (median, 95% CI; HR, 95% CI, P) AEs (n; %) Dis (n)	
NCT01740427 PALOMA-2 (Phase 3)	Rugo et al. 2019 ⁴⁶	666 no	negative	PAL 125 mg + LET 2.5 mg	pbo + LET 2.5 mg	PFS (median; HR, 95% CI, P) AEs (n; %) QoL (FACT-B, overall cfb, HR, 95% CI, P)	Pfizer	
	Rugo et al. 2018 ⁴⁷					QoL (FACT-B and EQ-5D, several measures)		
	Dieras et al. 2019 ⁴⁸						AEs (n; %; Risk Diff, 95% CI, P)	
	Durairaj et al. 2018 ⁴⁹						QTc (ms, LSM, cfb, SE, 90% CI)	
	Finn et al. 2016⁴						PFS (median, 95% CI; HR, 95% CI, P) AEs (n; %) Dis (n; %)	

Table 7: Evidence table for included RCTs with sufficient data – refers to HTA key questions 1-4
Trial	Author	Size*	Popula	ation		Compositor	Outrama magazinat	Cronor
Iriai	Year	(pts)	Prior ET†	HER2	Intervention	Comparator		Sponsor
NCT01942135 PALOMA-3	Harbeck et al. 2016 ⁵	521	yes	negative	PAL 125 mg + FUL 500 mg	pbo + FUL 500 mg	QoL (EORTC: TTD in pain scores, 95% CI, HR, P)	Pfizer
(Phase 3)	Verma et al. 2016 ⁵⁰						AEs (n; %; RD, %, 95% CI)	
	Turner et al. 2018 ³						PFS (median, 95% CI; HR, 95% CI, P) OS (median; HR, 95% CI, P; subgroup) AEs (n; %)	
	Loibl et al. 2016 ⁵¹						QoL (VAS, EQ-5D index, mean (SD), P)	
	Cristofanilli et al. 2018 ⁵²						PFS (median, 95% CI; HR, 95% CI, P)	
	Cristofanilli et al. 2016²						PFS, outdated (median, 95% CI; HR, 95% CI, P) Dis (n; %) AEs (n; %)	-
NCT01958021 MONALEESA-2 (Phase 3)	Hortobagyi et al. 2016 ⁵³	668	no	negative	RIB 600 mg + LET 2.5 mg	pbo + LET 2.5 mg	PFS (median; HR, 95% CI, P) Dis (n; %) AEs (n; %)	Novartis
	Janni et al. 2018 ⁵⁴	-					QoL (EORTC pain score: cfb, median %, mean)	
	Hortobagyi et al. 2018 ⁵⁵						PFS (median; HR, 95% CI, P) OS (n; %, median, HR, 95% CI) Dis (n; %) AEs (n; %)	
	Verma et al. 2018 ⁵⁶	-					QoL (EORTC; LSM, cfb, SEM; TTD, HR, 95% CI, P)	
NCT02422615 MONALEESA-3 (Phase 3)	Slamon et al. 2018 ⁵⁷	726	mixed (sg av.)	negative	RIB 600 mg + FUL 500 mg	pbo + FUL 500 mg	PFS (median, 95% CI, P; HR, 95% CI, P) Dis (n) AEs (n; %)	Novartis

Trial	Author	Size*	Population		Intervention	Compositor	Outrama management	Creaner
Iriai	Year	(pts)	Prior ET†	HER2	Intervention	Comparator		Sponsor
NCT02107703 MONARCH 2 (Phase 3)	Sledge et al. 2017 ⁵⁸	669	yes	negative	ABE 200/150 mg + FUL 500 mg	pbo + FUL 500 mg	PFS (median; HR, 95% CI, P), outdated AEs, outdated (n; %) Dis (n; %)	Eli Lilly
	Kaufman et al. 2019 ⁵⁹						QoL (mBPI-sf, EORTC: TTD: median; HR, 95% CI)	
	Sledge et al. 2019 ⁶⁰	_					OS (median; HR, 95% CI, P) PFS (median; HR, 95% CI) AEs (n; %)	
NCT00863655 BOLERO-2 (Phase 3)	Yardley et al. 2013 ⁶¹	724	yes	negative	EVE 10 mg + EXE 25 mg	pbo + EXE 25 mg	PFS (median; HR, 95% CI, P) Dis (n; %) AEs (n; %)	Novartis
	Piccart et al. 2014 ⁶²						OS (median; HR, 95% CI, P) AEs (n; %)	
	Burris et al. 2013 ⁶³						Dis (%) QoL (EORTC, TTD; median, 95% CI, P)	
	Campone et al. 2013 ⁶⁴						QoL (EORTC; LSM, cfb, SE, 95% CI; LSM difference, HR, 95% CI)	
NCT01610284 BELLE-2 (Phase 3)	Baselga et al. 2017 ⁶⁵	1'147	yes	negative	BUP 100 mg + FUL 500 mg	pbo + FUL 500 mg	PFS (median, 95% CI; HR, 95% CI, P) Dis (n; %) AEs (n; %)	Novartis
	Campone et al. 2018 ⁶⁶						OS (median, 95% CI; HR, 95% CI, P) AEs (n; %) Dis (%)	
NCT01633060 BELLE-3 (Phase 3)	Di Leo et al. 2018 ⁶⁷	432	yes	negative	BUP 100 mg + FUL 500 mg	pbo + FUL 500 mg	PFS (median, 95% CI; HR, 95% CI, P) AEs (n; %) Dis (n)	Novartis
NCT01602380 FALCON	Robertson et al. 2018 ⁶⁸	462	no	negative	FUL 500 mg	ANA 1 mg	QoL (FACT-B: cfb, mean, SD; TTD, median, HR, 95% CI, P)	AstraZeneca
(Phase 3)	Robertson et al. 2016 ⁶⁹						PFS (n; %, median; HR, 95% CI, P)AEs (n; %)	

Trial	Author	Size*	Popul	Population		Comparator	Outcome measured	Creana
Iriai	Year	(pts)	Prior ET†	HER2	Intervention	Comparator		Sponsor
NCT01266213 FLAG (Phase 2)	Kim et al. 2018 ⁷⁰	138	unclear	negative	FUL 500 mg + GOS 3.6 mg	Comparator 1: ANA 1 mg + GOS 3.6 mg Comparator 2: GOS 3.6 mg	TTP (median, 95% CI; HR, 95% CI) OS (HR, 95% CI, P) AEs (n; %, P) Dis (n)	AstraZeneca
NCT00073528 (Phase 3)	Johnston et al. 2009 ⁷¹	1'286	no	mixed (sg av.)	LAP 1500 mg + LET 2.5 mg	pbo + LET 2.5 mg	PFS (median; HR, 95% CI, P) AEs (n; %)	GSK
NCT00075764 (Phase 3)	Mehta et al. 2019 ⁷²	694	no	mixed (sg av.)	ANA 1 mg + FUL 500/250 mg	ANA 1 mg	PFS (median; HR, 95% CI, P), no subgroups OS (median; HR, 95% CI, P), no subgroups	AstraZeneca NCI
	Mehta et al. 2012 ⁷³						PFS (median, 95% Cl, P; HR, 95% Cl, P), outdated OS (median, 95% Cl, P; HR, 95% Cl, P), no subgroups Dis (n, P)	
NCT00229697 (Phase 2)	Osborne et al. 2011 ⁷⁴	290	mixed (sg av.)	mixed (sg av.)	GEF 250 mg + TAM 20 mg	pbo + TAM 20 mg	PFS (median; HR, 95% CI, P), subgroup only for HER2+ AEs (n; %) Dis (n)	AstraZeneca
NCT00253422 NCT00944918 SoFEA (Phase 3)	Johnston et al. 2013 ⁷⁵	723	mixed (sg av.)	mixed (sg av.)	ANA 1 mg + FUL 500/250 mg	Comparator 1: pbo + FUL 500/250 mg Comparator 2: EXE 25 mg	PFS (median, 95% CI; HR, 95% CI, P) OS (median, 95% CI; HR, 95% CI, P), no subgroups AEs (n, P; %) Dis (n)	NHS, ICR AstraZeneca
NCT00390455 (Phase 3)	Burstein et al. 2014 ⁷⁶	291	unclear	mixed (sg av.)	LAP 1500 mg + FUL 500 mg	pbo + FUL 500 mg	PFS (median; HR, 95% CI, P) OS (median; HR, 95% CI, P), no subgroups Dis (n; %)	NCI
NCT00545077 LEA (Phase 3)	Martin et al. 2015 ⁷⁷	380	unclear	negative	BEV 15 mg/kg + LET 2.5 mg or BEV 15 mg/kg +FUL 500 mg	LET 2.5 mg or FUL 500 mg	PFS (median, 95% CI, P; HR, 95% CI, P), subgroups per ET OS (median; HR, 95% CI, P), no subgroups AEs (n; %, P), no subgroups Dis (n), no subgroups	Roche

Trial	Author	Size*	Popul	ation		0	Quite and a manufacture of the second s	0
Iriai	Year	(pts)	Prior ET†	HER2	Intervention	Comparator	Outcome measures‡	Sponsor
NCT00696072 (Phase 2)	Paul et al. 2019 ⁷⁸	120	mixed (sg av.)	negative	DAS 100 mg + LET 2.5 mg	pbo + LET 2.5 mg	PFS exploratory (median; HR, 95% Cl) OS (median) AEs (n; %) Dis (n; %)	BMS
NCT00770354 (Phase 2)	Ibrahim et al. 2011 ⁷⁹	110	no	negative	AS1402 9 mg/kg + LET 2.5 mg	LET 2.5 mg	PFS (estimated HR, 95% CI) AEs (n; %)	Antisoma
NCT01142401 (Phase 2)	Adelson et al. 2016 ⁸⁰	118	mixed (no sg av.)	negative	BOR 1.6 mg + FUL 500 mg	FUL 500 mg	PFS (median; HR, 95% CI, P) Dis (n; %) AEs (n; %)	NCI
NCT01151215 MINT (Phase 2)	Johnston et al. 2016 ⁸¹	359	no	negative	AZD8931 20 mg + ANA 1 mg	Comparator 1: AZD8931 40 mg + ANA 1 mg Comparator 2: pbo + ANA 1 mg	PFS (median; HR, 95% CI, P) AEs (n; %) Dis (n)	AstraZeneca
NCT01160718 (Phase 2)	Zaman et al. 2015 ⁸²	46	unclear	negative	SEL 75 mg + FUL 500 mg	pbo + FUL 500 mg	PFS (median, 95% CI) AEs (n; %)	AstraZeneca
NCT01234857 (Phase 2)	Baselga et al. 2017 ⁸³	115	yes	negative	RID 30 mg + DAL 10 mg	EXE 25 mg	PFS (median, 95% CI; HR, 95% CI, P) Dis (n; %) AEs (n; %)	Merck
NCT01437566 FERGI (Phase 2)	Krop et al. 2016 ⁸⁴	229	yes	negative	PIC 340/260 mg + FUL 500 mg	pbo + FUL 500 mg	PFS (median, 95% CI; HR, 95% CI, P) AEs (n; %) Dis (n)	Roche
NCT01528345 (Phase 2)	Musolino et al. 2017 ⁸⁵	97	yes	negative	DOV 500 mg + FUL 500 mg	pbo + FUL 500 mg	PFS (median, 95% CI; HR, 95% CI) OS (HR, 95% CI; premature) AEs (n; %) Dis (n)	Novartis

Triol	Author	Size*	Popul	ation	Intervention	Compositor	Outcome messurest	Snonoor
Ina	Year	(pts)	Prior ET†	HER2	Intervention	Comparator	Outcome measures‡	Sponsor
NCT02216786 MANTA (Phase 2)	Schmid et al. 2019 ⁸⁶	333	yes	negative	VIS 50 mg + FUL 500 mg	Comparator 1: VIS 125 mg + FUL 500 mg Comparator 2: EVE 10 mg + FUL 500 mg Comparator 3: FUL 500 mg	PFS (median, 95% CI; HR, 95% CI, P) OS (HR, 95% CI, P; premature) AEs (n; %) Dis (n)	AstraZeneca NIH CRUK QMUL
NCT02437318 (Phase 3)	Andre et al. 2019 ⁸⁷	572	mixed (sg av.)	negative	ALP 300 mg + FUL 500 mg	pbo + FUL 500 mg	PFS (median, 95% CI; HR, 95% CI, P) Dis (n; %) AEs (n; %)	Novartis
NCT02482753 ACE (Phase 3)	Jiang et al. 2019 ⁸⁸	365	yes	negative	TUC 30 mg + EXE 25 mg	pbo + EXE 25 mg	PFS (median, 95% CI; HR, 95% CI, P) AEs (n; %) Dis (n)	Chipscreen
NCT02592746 KCSG-BR15-10 (Phase 2)	Park et al. 2019 ⁸⁹	184	mixed (no sg av.)	negative	PAL 125 mg + EXE 25 mg	CAP 1250 mg	PFS (median, 95% CI; HR, 95% CI, P) AEs (n; %) Dis (n)	Pfizer Shinpoong Daewoong Takeda
N/A (Phase 3)	Lipton et al. 2008 ⁹⁰	522	mixed (no sg av.)	mixed (sg av.)	LET 2.5 mg	TAM 20 mg	TTP (HR, 95% CI, P) OS (HR, 95% CI, P)	none declared
N/A (Phase 2)	Bachelot et al. 2012 ⁹¹	111	yes	negative	EVE 10 mg + TAM 10 mg	TAM 10 mg	TTP (median, 95% CI; HR, 95% CI) Dis (n) AEs (n; %)	Novartis

ABE=abemaciclib; AE=adverse event; ANA=anastrozole; BEV=bevacizumab; BMS=Bristol-Myers Squibb; BOR=bortezomib; BPI=brief pain inventory; BUP=buparlisib; CAP=capecitabine; cfb=change from baseline; CI=confidence interval; CRUK=Cancer Research UK; DAL=dalotuzumab; DAS=dasitinib; Dis=discontinuation due to adverse event; DOV=dovitinib; EORTC=European Organisation for Research and Treatment; ET=endocrine therapy; EVE=everolimus; EXE=exemestane; FUL=fulvestrant; GEF=gefitinib; GnRH=gonadotropin-releasing hormone agonist; GOS=gosereline; GSK=GlaxoSmithKline; HER2=human epidermal growth factor receptor 2; HR=hazard ratio; ICR=The Institute of Cancer Research, London; LAP=lapatinib; LET=letrozole; LSM=least squares mean; mBPI-sf=modified Brief Pain Inventory short form; ms=milliseconds; n=number of patients; N/A=not applicable; NCI=National Cancer Institute; NIH=National Institutes of Health; OS=overall survival; P=p-value; PAL=palbociclib; pbo=placebo; PFS=progression-free survival; PIC=pictilisib; pts=patients; QMUL=Queen Mary University of London; QoL=quality of life; QTc=corrected QT-interval; RD=risk difference; RIB=ribaciclib; RID=ridaforolimus; SD=standard deviation; SE=standard error; SEM=standard error of the mean; sg av.=subgroup available; TAM=tamoxifen; TTD=time to deterioration; TTP=time to progression;

* Total number of patients in trial. † In line with the population defined in the PICO schemes, "prior ET" means that a patient has relapsed or progressed during or within 12 months after adjuvant ET or during ET for advanced-stage disease.

‡ If an outcome is listed as "outdated" it means that this article reports data on this outcome but they are not the most recent, as another article on this trial reports data on the same outcome from a more recent data cut-off.

Trial Author		Size*	Рор	ulation	Intervention	Compositor		Spanaar
That	Year	(pts)	Prior ET	HER2†	Intervention	Comparator		Sponsor
NCT00721409 NCT01740427 NCT01942135 PALOMA-1/2/3‡	Dieras et al. 2019 ⁹²	1343	mixed (no sg av.)	negative	PAL 125 mg + LET 2.5 mg or PAL 125 mg + LET 2.5 mg or PAL 125 mg + FUL 500 mg	LET 2.5 mg or pbo + LET 2.5 mg or pbo + FUL500 mg	AEs, most recent data cut-off but mixed LET/FUL (n; %;) Dis (n; %)	Pfizer
NCT02278120 MONALEESA-7 (Phase 3)	Tripathy et al. 2018 ⁹³	672	yes	negative	RIB 600 mg + LET 2.5 mg or	pbo + LET 2.5 mg or	PFS (median; HR, 95% CI, P) subgroups NSAI vs. TAM AEs (n; %) Dis (n; %) QoL (EORTC: TTD, median, HR, 95% CI, P)	Novartis
	Im et al. 2019 ⁹⁴	672			RIB 600 mg + ANA 1 mg or RIB 600 mg + TAM 20 mg	pbo + ANA 1 mg or pbo + TAM 20 mg	OS (n; %, median, HR, 95% Cl, P,) subgroups NSAI vs. TAM Dis (n; %) AEs (n; %)	
NCT02246621 MONARCH 3 (Phase 3)	Johnston et al. 2019 ⁹⁵	493	no	negative	ABE 150 mg + LET 2.5 mg or ABE 150 mg + ANA 1 mg	pbo + LET 2.5 mg or pbo + ANA 1 mg	PFS (median; HR, 95% Cl, P) subgroup per ET unclear AEs (n; %) Dis (n; %)	Eli Lilly

Table 8: Evidence table for RCTs for which supplementary data needs to be requested – refers to HTA key questions 1-4

Trial	Author	Size*	Рор	ulation	Intervention	Compositor		Sponsor
Iriai	Year	(pts)	Prior ET	HER2†	Intervention	Comparator	Outcome measures	Sponsor
NCT00305448 FINDER1 (Phase 2)	Ohno et al. 2010 ⁹⁶	143	yes	mixed (no sg av.)	FUL 250 mg	Comparator 1: FUL 250/500 mg Comparator2: FUL 500 mg	TTP (median) AEs (n; %) Dis (n; %)	AstraZeneca
NCT00313170 FINDER2 (Phase 2)	Pritchard et al. 2010 ⁹⁷	144	yes	mixed (no sg av.)	FUL 250 mg	Comparator 1: FUL 250/500 mg Comparator2: FUL 500 mg	TTP (median) AEs (n; %) Dis (n)	AstraZeneca
NCT00274469 FIRST (Phase 2)	Ellis et al. 2015 ⁹⁸	205	no	mixed (no sg av.)	FUL 500/250 mg	ANA 1 mg	OS (median; HR, 95% CI, P) AEs (n; %)	AstraZeneca
	Robertson et al.2012 ⁹⁹	205					TTP (median; HR, 95% CI, P)	
	Robertson et al. 2009 ¹⁰⁰	205					TTP (median; HR, 95% CI, P) AEs (n; %, P) Dis (n; %)	
NCT00050141 (Phase 2)	Johnston et al. 2008 ¹⁰¹	121	unclear	mixed (no sg av.)	TIP 300 mg + LET 2.5 mg	pbo + LET 2.5 mg	TTP (median, 95% CI) AEs (n; %)	J&J
NCT00066378 (Phase 2)	Tryfonidis et al. 2016 ¹⁰²	71	mixed (sg av.)	mixed (no sg av.)	GEF 250 mg + ANA 1 mg	pbo + ANA 1 mg	PFS (% at 1 year, 95% Cl) AEs (n; %)	AstraZeneca EORTC
NCT00083993 (Phase 3)	Wolff et al. 2013 ¹⁰³	1112	no	mixed (no sg av.)	TEM 30 mg + LET 2.5 mg	pbo + LET 2.5 mg	PFS (median, 95% CI; HR, 95% CI, P) OS, premature, trial terminated (HR, 95% CI, P) AEs (n; %)	Pfizer (Wyeth) NIH
NCT00601900 CALGB 40503 (Phase 3)	Dickler et al. 2016 ¹⁰⁴	348	yes	mixed (no sg av.)	LET 2.5 mg + BEV 15 mg/kg	pbo + LET 2.5 mg	PFS (n; %, median; HR, 95% CI, P) OS (n; %, median; HR, 95% CI, P) Dis (n; %) AEs (n; %)	Genentech Novartis

Trial Author		Size*	Population					Sponsor
Ina	Year	(pts)	Prior ET	HER2†	intervention	Comparator	Outcome measures	Sponsor
NCT00626106 (Phase 2)	Robertson et al. 2013 ¹⁰⁵	156	yes	mixed (no sg av.)	GAN 12 mg/kg + FUL 500 mg or GAN 12 mg/kg + EXE 25 mg	pbo + FUL 500 mg or pbo + EXE 25 mg	PFS (median, 80% CI, IQR; HR, 80% CI, P) subgroup per ET OS, premature (HR, 80% CI, P) AEs (n; %) Dis (n; %)	Amgen
NCT00676663 (Phase 2)	Yardley et al. 2013 ¹⁰⁶	130	mixed (no sg av.)	mixed (no sg av.)	ENT 5 mg + EXE 25 mg	pbo + EXE 25 mg	PFS (median, 95% CI; HR, 95% CI, P) OS, premature (HR, 95% CI, P) AEs (n; %)	Syndax
UMIN000010087 Hi-FAIR ex (Phase 2/3)	Yamamoto et al. 2013 ¹⁰⁷	91	yes	mixed (no sg av.)	TOR 120 mg	EXE 25 mg	PFS (median; HR, 95% CI, P) OS (median; HR, 95% CI, P) Dis (n)	none declared
N/A (Phase 3)	lwata et al. 2013 ¹⁰⁸	298	unclear	mixed (no sg av.)	pbo + EXE 25 mg	pbo + ANA 1 mg	TTP (median, 96% CI; HR, 95% CI) OS, premature (median, 96% CI; HR, 95% CI) AEs (n; %) Dis (n; %)	Pfizer

ABE=abemaciclib; AE=adverse event; ANA=anastrozole; BEV=bevacizumab; CI=confidence interval; Dis=discontinuation due to adverse event; ENT=entinostat; EORTC=European Organisation for Research and Treatment of Cancer; ET=endocrine therapy; EXE=exemestane; FUL=fulvestrant; GAN=ganitumab; GEF=gefitinib; GOS=gosereline; HER2=human epidermal growth factor receptor 2; HR=hazard ratio; J&J=Johnson&Johnson; LET=letrozole; LHRH=luteinising hormone-releasing hormone analogue; LSM=least squares mean; n=number of patients; N/A=not applicable; NIH=National Institutes of Health; NSAI=non-steroidal aromatase inhibitor; OS=overall survival; P=p-value; PAL=palbociclib; pbo=placebo; PFS=progression-free survival; pts=patients; QoL=quality of life; RIB=ribociclib; sg av.=subgroup available; TAM=tamoxifen; TEM=temsirolimus; TIP=tipifarnib; TOR=toremifene; TTD=time to deterioration; TTP=time to progression

* Total number of patients in trial.

† In line with the population defined in the PICO schemes, "prior ET" means that a patient has relapsed or progressed during or within 12 months after adjuvant ET or during ET for advanced-stage disease.

‡ Dieras et al. (2019)⁹² provide a pooled long-term analysis of AEs in patients in the PALOMA-1, PALOMA-2 and PALOMA-3 trials. These represent the most recent AEs data from the three trials but the report does not provide a subgroup analysis based on the different ETs.

Table 9: Evidence table for extended safety analysis of PAL – refers to HTA key questions 3 and

Author Year	Study design	Size (pts)	Outcomes	Sponsor*	COI with Pfizer†	Country
Ban et al. 2018 ¹⁰⁹	retr. cohort	24	various AEs	Pfizer (drug)‡	no	HR
Battisti et al. 2019 ¹¹⁰	retr. cohort	118	various AEs	Pfizer (drug)‡	yes	GB
Bromberg et al. 2016 ¹¹¹	case series	2	hyperuricemia	not disclosed	not disclosed	US
Brufsky et al. 2019 ¹¹²	retr. cohort	126	dose reductions treatment interruptions	Pfizer	yes	US
Bui et al. 2019 ¹¹³	retr. cohort	46	various AEs dose reductions treatment interruptions	none	no	NL
Clifton et al. 2019 ¹¹⁴	retr. cohort	605	haematological AEs	none	yes	US
du Rusquec et al. 2018 ¹¹⁵	prosp. cohort	60	various AEs	none	yes	FR
Gao et al. 2015 ¹¹⁶	case report	1	neutropenia	Pfizer (drug)‡	yes	US
Gong et al. 2018 ¹¹⁷	retr. cohort	100	various AEs dose reductions	not disclosed	no	US
Gowarty et al. 2019 ¹¹⁸	case report	1	adverse drug interaction	none	no	US
Guerin et al. 2018 ¹¹⁹	retr. cohort	210	various AEs therapy duration	Novartis	no	US
Guillemois et al. 2018 ¹²⁰	case report	1	leukocytoclastic vasculitis	not disclosed	no	FR
Harrold et al. 2019 ¹²¹	case report	1	reversible encephalopathy syndrome	not disclosed	no	IE
Herrscher et al. 2019 ¹²²	retr. cohort	77	various AEs treatment interruptions dose reductions	not disclosed	yes	FR
Hoste et al. 2018 ¹²³	retr. cohort	82	various AEs treatment interruptions dose reductions	Pfizer	no	NL
lwamoto et al. 2018 ¹²⁴	retr. cohort	26	various AEs treatment interruptions dose reductions	not disclosed	not disclosed	JP
Jazieh et al. 2019 ¹²⁵	case report	1	drug-induced pneumonitis	none	no	US
Karagounis et al. 2018 ¹²⁶	case report	1	Stevens-Johnson syndrome/toxic epidermal necrolysis	none	no	US

Author Year	Study design	Size (pts)	Outcomes	Sponsor*	COI with Pfizer†	Country
Kawamoto et al. 2019 ¹²⁷	case report	1	adverse interaction with radiotherapy	not disclosed	no	JP
Kish et al. 2018 ¹²⁸	retr. cohort	763	neutropenia dose modifications	Pfizer	yes	US
Masuda et al. 2018 ¹²⁹	single arm	42	various AEs treatment interruptions dose reductions	Pfizer	yes	JP
Maurer et al. 2018 ¹³⁰	retr. cohort	34	various AEs treatment interruptions dose reductions	Pfizer (drug)‡	yes	BE
Messer et al. 2019 ¹³¹	case report	1	adverse interaction with radiotherapy	none	no	US
Momper et al. 2019 ¹³²	case report	1	adverse drug interaction	none	no	US
Nelson et al. 2017 ¹³³	case report	1	adverse drug interaction	none	no	US
Nersesjan et al. 2019 ¹³⁴	case report	1	adverse drug interaction	none	no	DK
Nwabudike et al. 2018 ¹³⁵	case report	1	aplastic anaemia	not disclosed	no	US
Pinard et al. 2018 ¹³⁶	case report	1	subacute cutaneous lupus erythematosus	none	yes	US
Pizzuti et al. 2019 ¹³⁷	retr. cohort	423	various AEs	not disclosed	no	IT
Raiss et al. 2018 ¹³⁸	case report	1	thrombotic microangiopathy	none	no	MA
Roberts et al. 2018 ¹³⁹	case report	1	elevated liver function tests	not disclosed	no	US
Schickli et al. 2019 ¹⁴⁰	retr. cohort	53	haematological AEs dose reductions	none	yes	US
Stearns et al. 2018 ¹⁴¹	prosp. cohort	334	various AEs treatment interruptions dose reductions	Pfizer	yes	US/CA
Tamura et al. 2016 ¹⁴²	single arm	6	various AEs	Pfizer	yes	JP
Tang et al. 2017 ¹⁴³	retr. cohort	10313	treatment disruptions after palbociclib approval	Novartis	no	US
Taylor-Stokes et al. 2019 ¹⁴⁴	retr. cohort	652	dose modifications treatment discontinuations	Pfizer	yes	US
Varella et al. 2019 ¹⁴⁵	retr. cohort	411	various AEs treatment interruptions dose reductions	not disclosed	no	US
Vuppalanchi et al. 2017 ¹⁴⁶	case series	2	hepatic failure	not disclosed	yes	US

Author Year	Study design	Size (pts)	Outcomes	Sponsor*	COI with Pfizer†	Country
Waller et al. 2019 ¹⁴⁷	retr. cohort	162	dose reductions treatment interruptions	Pfizer	yes	AR
Watson et al. 2019 ¹⁴⁸	retr. cohort	64	various AEs treatment interruptions dose reductions	not disclosed	no	IE
Wilkie et al. 2019 ¹⁴⁹	retr. cohort	70	neutropenia treatment interruptions dose reductions	not disclosed	yes	US
Xi et al. 2019 ¹⁵⁰	retr. cohort	200	various AEs dose reductions	not disclosed	yes	US

AE=adverse event; AR=Argentina; BE=Belgium; CA=Canada; COI=conflict of interest; DK=Denmark; FR=France; GB=Great Britain; HR=Croatia; IE=Ireland; IT=Italy; JP=Japan; MA=Morocco; NL=The Netherlands; prosp.=prospective; pts=patients; retr.=retrospective; US=United States of America

* Refers to industry funding for the study/publication. "none" indicates that the authors declared that they did not receive industry funding for the study/publication. "not disclosed" indicates that no specific information on funding was provided in the publication.

† Refers to potential personal conflicts of interest of the authors which can arise, for example, from receiving consultation fees or serving on advisory boards. As the publications listed in this table pertain to safety data on PAL, we extracted declared COI of authors exclusively with the manufacturer Pfizer. "no" indicates that the authors declared that they did not have any COI with Pfizer. "not disclosed" indicates that no specific information on COI was provided in the publication.

‡ Pfizer provided PAL free of charge.

8.1.3 Findings regarding efficacy, effectiveness and safety

We identified 70 publications reporting on 44 individual RCTs providing evidence relevant to the assessment of clinical effectiveness and safety in a potential NMA.2-6 43-46 48-108 Four trials included PAL in one treatment arm.^{24 45 89} For two of the included trials, no information could be found on the locations of the trial centres.^{91 108} The remaining trials recruited patients from a total of 61 countries, which are listed in Appendix 12.3. Six trials also recruited patients in Switzerland but none of those included PAL in a treatment arm.^{57 58 65 82 93 105} All trials reported data on either PFS or TTP (two similar outcome measures, see discussion in Chapter 9). Most of the trials also reported AEs, while only a subset provided OS or QoL data. Of the 44 selected RCTs, 13 reported data on mixed patient cohorts (with regard to either HER2-status or treatment with different ET agents) without providing subgroup analyses.^{93 95-97 100-108} These RCTs are included in the present evidence base; however, during the HTA phase, supplementary data will have to be requested from the study authors. Only if (sufficient) data can be obtained will these studies be included in the final study pool. A preliminary quality assessment of the 44 RCTs based on four RoB domains was performed and is presented in Table 20 (Appendix 12.3). High or unclear RoB was found in 45 per cent (20 of 44) of the RCTs regarding blinding of outcome assessment, in 43 per cent (19 of 44) of the RCTs regarding blinding of participants and personnel, in 39 per cent (17 of 44) of the RCTs regarding allocation concealment and in 18 per cent (8 of 44) of the RCTs regarding random sequence generation (see Figure 5).

Numbers within the bars represent the numbers of trials in the categories concerned..

We identified 42 non-randomised studies (NRSs) providing relevant evidence for the extended safety assessment.¹⁰⁹⁻¹⁵⁰ They comprised 15 single case reports, 2 case series, 2 prospective cohort studies,

21 retrospective cohort studies and 2 single arm trials. More than half of the studies were conducted in the US, 13 in Europe (none of them in Switzerland). The case reports mainly reported on rare AEs and adverse drug interactions. Almost all of the cohort studies and single arm trials reported on various AEs; most of them also reported on treatment disruptions and dose modifications due to AEs.

The extracted characteristics of relevant ongoing trials are presented in Table 28 in Appendix 12.6. Sixty-two ongoing trials have been identified that in the future might provide additional data on any of the treatments compared in the present assessment of clinical effectiveness and safety; thirteen of these include PAL in one or more treatment arms. Two ongoing single-arm trials have been identified that study relevant PAL combination therapies and might provide additional data on the safety of PAL (UMIN000029294 and NCT02692755). In addition, one RCT was identified that investigates the effect of eHealth support on the quality of life in patients treated with PAL and ET (EUCTR2016-004191-22-DE).

8.2 Evidence base pertaining to costs, cost effectiveness and budget impact

8.2.1 PRISMA flow diagram

Table 19 (Appendix 12.2.8) shows the number of hits retrieved through the systematic search described in Subsection 7.1.2.1 in MEDLINE, EMBASE, The Cochrane Library, TRIP database, CRD and Scopus. After removal of duplicates in Endnote, 1'107 hits remained. Figure 6 shows the PRISMA flow chart for economic studies.

* Literature search for safety (extended analysis) and health economics as well as ethical, social, legal and organisational aspects.

† Refers to the literature search for efficacy, effectiveness and safety (RCTs) as well as other sources described in Section 7.2.

8.2.2 Evidence table

Eight relevant publications could be identified. They are described in Table 10.

Study (author/year)	Galve-Calvo et al. (2018) ¹⁵¹	Mamiya et al. (2017) ⁷	Mistry et al. (2018) ¹⁵²	Raphael et al. (2017) ¹⁵³	Matter-Walstra et al. (2016) ⁸	Matter-Walstra et al. (2017) ¹⁵⁴ – update	Zhang B.; Long, E.F. (2019) ¹⁵⁵	Zhang et al. (2019) ¹⁵⁶
Country/region	ES	US	US	CA	СН	СН	US	US, CN
Type of economic evaluation	CEA	CEA	CEA	CEA	CEA BIA	CEA	CEA	CEA
Perspective	Payer	Society‡	Payer	Payer	Payer	Payer	Not stated	US Payer CN Payer
Population	Hypothetical co- hort of* postmen- opausal women advanced HR+/HER2- first line without prior endocrine therapy	Hypothetical co- hort of 10'000 postmenopausal women ad- vanced HR+/HER2- Group A: first line without prior endocrine ther- apy Group B: second line with prior endocrine ther- apy	Hypothetical co- hort of* postmen- opausal women advanced HR+/HER2- first line without prior endocrine therapy	Hypothetical co- hort of* post- menopausal women ad- vanced HR+/HER2- first line without prior endocrine therapy	Hypothetical co- hort of* post- menopausal women ad- vanced HR+/HER2- first line without prior endocrine therapy	same as 2016	Hypothetical co- hort of 10'000 postmenopausal women advanced HR+/HER2 - first line without prior endocrine therapy†	Hypothetical co- hort of* post- menopausal women ad- vanced HR+/HER2- second line with prior endocrine therapy
Intervention	RIB + LET (200 + 2.5 mg)	Group A: PAL + LET (125 + 2.5 mg) Group B: PAL + FUL dose*	RIB + LET (dose)*	PAL + LET (125 + 2.5 mg)	PAL + LET (125 + 2.5 mg)	same as 2016	PAL + LET (125 + 2.5 mg)	PAL + FUL (125 + 500 mg)
Comparator	PAL + LET (125, 100, 75 + 2.5 mg)	Group A: LET (dose)* Group B: FUL (dose)*	LET (dose)* PAL + LET (dose)*	LET (2.5 mg)	LET (2.5 mg)	same as 2016	RIB + LET (600 + 2.5 mg) LET (2.5 mg)	pbo + FUL (500 mg)

Table 10: Evidence table for economic studies – refers to HTA key questions 5-7

Table 10: Evidence table for economic studies (continued)

Outcome measures - EA	LYG, QALY; ICER, ICUR	QALY, ICER	LYG, QALY, ICER	QALYMs, ICER, INB	Healthcare costs, ICER, QALY	same as 2016	QALY, ICER	LYG, QALY, ICER
Model type/time	Partitioned sur- vival model	Discrete event simulation model	Partitioned sur- vival model	Discrete event simulation model	Markov cohort simulation	same as 2016	Markov model	Markov model
	Time horizon: 15 years	Time horizon: life time	Time horizon: 40 years	Time horizon: 15 years	Time horizon: life time		Time horizon: life time	Time horizon: 10 years
Costs included/Year	direct costs: drugs, admin- istration, monitor- ing, treatment, adverse events, end-of-life care	direct costs: drugs, outpatient, labor- atory, adverse events, hospice	direct costs: drugs, admin- istration, monitor- ing, treatment, subsequent treat- ments, adverse of events, end-of- life care	direct costs: drugs, admin- istration; treat- ment, monitor- ing, adverse events, subse- quent treatment, death	direct costs: drugs , follow- up treatment, treating neutro- penia	updated: drug costs for PAL valued with Swiss Public Prices 2017	direct costs; drugs, treating severe neutro- penia	direct costs: drugs, admin- istration, pain medications, monitoring, seri- ous adverse events, routine follow-up¶
	Year: 2017	Year: 2015	Year: 2016	Year: not stated	Year: 2016	Year: 2017	Year: 2016	Year: 2018
Data source EFF	Trials: MONALEESA-2, PALOMA-2, PALOMA-1§	Model-based (adverse events based on trials)	Trials: MONALEESA-2; PALOMA-1 Bayesian net- work meta-analy- sis	Trials: PALOMA-1 and PALOMA-2	Trial: PALOMA-1	same as 2016	Trials: PALOMA-1; MONALEESA-2	Trials: PALOMA-3 (PFS); CONFIRM-3 (OS)
Data source for utili- ties	MONALEESA-2 and literature	Literature	MONALEESA-2 and literature	literature	literature (LET)	same as 2016	literature	literature

Table 10: Evidence table for economic studies (continued)

Statistical validation	univariate sensi- tivity analysis, PSA	univariate sensi- tivity analysis, PSA	deterministic sen- sitivity analysis, PSA	PSA, CEAC	univariate sensi- tivity analysis, PSA	same as 2016	univariate sensi- tivity analysis	univariate sensi- tivity analysis, PSA
Sponsor(s)	Novartis	none declared	Novartis	none declared	Swiss State Sec- retariat for Edu- cation, Research and Innovation	same as 2016	none declared	Grants (National Natural Science Foundation; Key Science-Tech- nology Research and Develop- ment Program)
СОІ	yes (consultancy fees, employ- ment relation- ship)	none declared	yes (employment re- lationship)	none declared	none declared	same as 2016	none declared	none declared

BIA=budget-impact analysis; CEA=cost effectiveness analysis; CA=Canada; CEAC=cost effectiveness acceptability curve; CH=Switzerland; CN=China; COI=conflict of interest; EA=economic evaluation; ES=Spain; FUL=fulvestrant; ICER=incremential cost effectiveness- ratio; ICUR=incremential cost-utility ratio; INB=incremental net monetary benefit; LYG=lifeyears gained; NHS=national health service; OS=overall survival; pbo=placebo; PFS=progression-free survival; PSA=probabilistic sensitivity analysis; QALY=quality-adjusted life years; QUALMs=guality-adjusted life months; US=United States of America, WTP=willingness-to-pay

* (Number) not stated.

+ Not explicitly mentioned.

+ Stated by the authors; however, the perspective is not clear. As a limitation only the use of direct costs is mentioned. § PFS and OS for RIB and LET from MONALEESA-2; PFS for PAL + LET from PALOMA-2 and OS from PALOMA-1 trial, indirect comparisons.

For PAL from USA, for LET Swiss drug costs.

Radiography, computed or magnetic resonance tomography.

8.2.3 Findings regarding costs, cost effectiveness and budget impact

The systematic literature search for the economic domain retrieved eight cost effectiveness analyses^{7 8} ¹⁵¹⁻¹⁵⁶, of which one study – Matter-Walstra et al. 2017¹⁵⁴ – was an update of the study by Matter-Walstra et al. from 2016.⁸ Only one rough estimation of the budget impact was identified; it was included in the study for Switzerland^{8 154} and estimated the annual budget impact for the treatment of PAL + LET versus LET alone.

- Galve-Calvo et al.¹⁵¹ assessed RIB and LET versus PAL and LET in the first-line treatment of postmenopausal patients with HR+/HER2- advanced breast cancer using a cohort-based partitioned survival model. The analysis was performed from the perspective of the Spanish healthcare system. The efficacy data were based on the MONALEESA-2 study and PALOMA-1 and PALOMA-2. The utility values were taken from the MONALEESA-2 study and literature. The authors conducted a cost effectiveness analysis (CEA) taking the following direct costs into account: pharmaceuticals, administration costs, monitoring costs, adverse event costs (e.g. diarrhoea, infection, nausea, neutropenia, pulmonary embolism, vomiting) as well as end-of-life care (e.g. palliative care, acute hospital unit). One limitation of the study was that only indirect comparisons could be conducted as the two CDK4/6 inhibitors were not directly compared in head-to-head clinical trials.
- Mistry et al.¹⁵² also compared RIB and LET versus PAL and LET as well as LET monotherapy as a first-line treatment in a hypothetical cohort of postmenopausal women with HR+/HER2 advanced breast cancer using a partitioned survival model. The analysis was performed from the perspective of a private third party payer in the US. The efficacy data were based on the MONALEESA-2 and PALOMA-1 trials. The utility values were taken from the MONALEESA-2 study and literature. The cost parameters included were similar to those in Galve-Calvo et al.¹⁵² There were two imitations of the study: PFS and OS were taken from two different trials (indirect comparison) and healthcare resource use data were only available to a limited extent.
- Mamiya et al.⁷ conducted a CEA for PAL and LET versus LET monotherapy (group A without prior ET) and PAL and FUL versus FUL monotherapy (group B with prior ET) with a discrete event simulation model. The authors stated that the analysis was performed from a "societal" perspective in the US. However, only direct costs were included (drugs, outpatient and laboratory costs, costs for adverse events and hospice). The efficacy data were based on clinical trials (MONALEESA-2, PALOMA-1) and the utility values came from the literature. Limitations of the study included 1) that therapies after PAL treatment were not reported in the trials and therefore a specific type and sequence of therapies after PAL treatment had to be assumed and 2) that only wholesale acquisition costs for drugs were available.

- Raphael et al.¹⁵³ compared PAL and LET versus LET monotherapy as a first-line treatment in a hypothetical cohort of postmenopausal women with advanced HR+/HER2- breast cancer using a discrete event simulation model. The CEA was carried out from the perspective of the Canadian healthcare system. The efficacy data were based on the PALOMA-1 and PALOMA-2 trials and the utility values were taken from the literature.¹⁵² Some limitations of the study were that OS data were not fully reported and that overall probability of death may have been overestimated.
- Matter-Walstra et al.^{8 154} also compared PAL and LET versus LET as first-line treatment in a hypothetical cohort of postmenopausal women with advanced HR+/HER2- breast cancer using a Markov model. The CEA was conducted from the perspective of the Swiss healthcare system. Furthermore the yearly budget impact for the Swiss healthcare system was calculated. The efficacy data were based on the PALOMA-1 trial and the utility data for LET came from the literature. Limitations included the fact that PAL utilities were not available and that only costs related to drug use, followup treatment and the treatment of neutropenia were included in the analysis.
- Zhang, B. and Long, E.F.¹⁵⁵ compared PAL and LET versus RIB and LET as well as LET monotherapy in a hypothetical cohort of postmenopausal women with advanced HR+/HER2- breast cancer without prior ET. They used a Markov model. The CEA was done from the perspective of the US healthcare system. The efficacy data came from clinical trials (PALOMA-1, MONALEESA-2) and the utility values were taken from the literature. Drug costs and treatment costs for severe neutropenia were included. Limitations of the study were that the median OS had to be simulated and some costs such as physician visits or hospital costs were not considered.
- Zhang et al.¹⁵⁶ assessed PAL and FUL versus placebo and FUL as second-line therapy (with prior ET) in a hypothetical cohort of postmenopausal women with advanced HR+/HER2- breast cancer using a Markov model. The analyses were performed from the perspective of the US and Canadian payers. The efficacy data were taken from the PALOMA-3 and CONFIRM trials and the utility values from the literature. Limitations were that the median OS was derived from another trial instead of the PALOMA-3 trial and that the utility values were obtained from the literature and were assumed to be equal in the same state of health.

Overall the quality of the identified studies was moderate. They differed mainly with regard to the models used, the extent of included costs, the level of detail of the description of input and output parameters, the model descriptions and which secondary literature (in addition to the clinical trials) was used for unknown parameters. For a detailed quality assessment, see Appendix 12.5.

8.3 Evidence base pertaining to legal, social and ethical issues

8.3.1 PRISMA flow diagrams

Table 19 (Appendix 12.2.8) shows the number of hits retrieved through the systematic search described in Subsection 7.1.2.1 in MEDLINE, EMBASE, The Cochrane Library, TRIP database, CRD and Scopus. After removal of duplicates in Endnote, 1'107 hits remained. Figure 7 to Figure 9 show the PRISMA flow charts for publications on legal, social and ethical issues.

Figure 7: PRISMA flow chart for publications on legal issues - refers to HTA key question 8 and

legal issue Subsection 6.1.4

* Literature search for safety (extended analysis) and health economics as well as ethical, social, legal and organisational aspects.

† Refers to the literature search for efficacy, effectiveness and safety (RCTs) as well as other sources described in Section 7.2.

Figure 8: PRISMA flow chart for publications on social issues - refers to HTA key question 8

and social issue Subsection 6.1.2

* Literature search for safety (extended analysis) and health economics as well as ethical, social, legal and organisational aspects.

† Řefers to the literature search for efficacy, effectiveness and safety (RCTs) as well as other sources described in Section 7.2.

Figure 9: PRISMA flow chart for publications on ethical issues – refers to HTA key question 8

and ethical issue Subsection 6.1.1

* Literature search for safety (extended analysis) and health economics as well as ethical, social, legal and organisational aspects.

† Řefers to the literature search for efficacy, effectiveness and safety (RCTs) as well as other sources described in Section 7.2.

8.3.2 Evidence tables

8.3.2.1 Legal issues

No relevant publications could be identified.

8.3.2.2 Social issues

One relevant publication could be identified (Darden et al. 2018¹⁵⁷). It is described in Subsection 8.3.3.2.

8.3.2.3 Ethical issues

Nine relevant publications could be identified. They are described in Table 11 and Table 12.

Author Year	Study design	Study aim	Search pe- riod	Included study de- signs	Number of in- cluded studies	Population	Interven- tion	Com- parator	(Ex- tracted) outcome measures	Sponsor(s)	Conflict of inter- est¶
Bottom- ley et al. 2002 ¹⁵⁸	SR	systematic review of studies of HrQoL in patients with advanced breast cancer	1995 to 2001	RCTs that reported (pa- tient re- ported) HrQoL re- sults and in- cluded 50 patients or more	19	MBC	not (pre)spec ified	not (pre)sp ecified	(patient re- ported) HrQoL	not disclosed	none declared
Forsythe et al. 2018 ¹⁵⁹	SR	to assess PFS and other factors that influence OS and treatment re- sponse as well as HrQoL	January 2006 to January 2017	Phase II and III RCTs, ob- servational studies in a "targeted search"	79 (RCTs)	HR+/HER2- MBC	not (pre)spec ified	not (pre)sp ecified	PFS or TTP, OS (reported as either median survival or hazard ra- tios)	Novartis	yes (employment relationship)
Krohe et al. 2016 ¹⁶⁰	SR	to examine how PROs are utilized as endpoints in in- dustry-sponsored MBC clinical trials registered in the clinicaltrials.gov database	search date: mid- 2015, no further in- formation	Phase II and III RCTs sponsored by industry	38	MBC	24 se- lected MBC treat- ments*	not (pre)sp ecified	PRO measures	Novartis	none declared

Table 11: Evidence table for systematic reviews on ethical issues – refers to HTA key question 8 and ethical issue Subsection 6.1.1

Table 11: Evidence table for systematic reviews on ethical issues	(continued)
---	-------------

Lux et al. 2019 ¹⁶¹	SR + MA	to apply the meth- ods proposed by IQWiG† in the in- dication of HR+/HER2- MBC to validate PFS as surrogate endpoint for OS	search date: mid- 2016, no further in- formation	RCTs (all phases)	26 (16 in quantita- tive anal- ysis)	HR+/HER2- lo- cally ad- vanced‡ or metastatic breast cancer regardless of line of treat- ment	At least one study arm in- vesti- gated: FUL, LET, TAM, EXE or ANA	Any drug in- terven- tion as single agent or in combi- nation therapy	OS, PFS	Pfizer Deutschland GmbH	yes (honoraria, em- ployment relation- ship)
Sherrill et al. 2008 ¹⁶²	SR + MA	association be- tween OS and TTP or PFS in MBC studies	1994 to 2007	RCTs (all phases) re- porting both TTP (or PFS) and OS	67	MBC	not (pre)spec ified	not (pre)sp ecified	TTP (or PFS) and OS	not disclosed	yes (employment relationship)
Temple- ton et al. 2015 ¹⁶³	SR	to explore whether bias due to imbal- anced censoring was present in re- ports of phase 3 trials for women with MBC; to com- pare correlation of OS and PFS/TTP as well as OS and TTF§	January 2001 to December 2012	phase 3 RCTs for MBC with at least 150 pa- tients	34	MBC	not (pre)spec ified	not (pre)sp ecified	PFS, TTP or OS as primary end point	Swiss Can- cer Research Foundation	none declared

ANA=anastrozole; EXE=exemestane; FUL=fulvestrant; HR=hormone receptor; HER2=human epidermal growth factor receptor 2; HrQoL=health-related quality of life; IQWiG=Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen; LET=letrozole; MA=meta-analysis; MBC=metastatic breast cancer; OS=overall survival; PFS=progression-free survival; PRO=patient reported outcome; RCT=randomized controlled trials; SR=systematic review; TAM=tamoxifen; TTF=the end point of time-to-treatment failure; TTP=time-to-progression * Including hormonal agents for the ER+ patient population, HER2-targeted agents for the HER2+ patient population, chemotherapy for the triple-negative patient population, CDK 4/6 inhibitors, PI3K inhibitors.

† Methods for the validation of surrogate endpoints in HTA context (IQWiG rapid report from 2011, cited in Lux et al. 2019¹⁶¹).

Motion and the validation of study treatment for any reason is considered an event.
 S Where discontinuation of study treatment for any reason is considered an event.
 With Kaplan–Meier curves for PFS/TTP showing numbers at risk at different follow-up times and reporting HRs for these outcomes.

(Mainly) regarding pharmaceutical companies.

Table 12: Evidence table for other publication types on ethical issues	- refers to HTA key question 8 and ethical issue Subsection 6.1.1
--	---

Author Year	Study title	Study design	Relevant ethical issues	Sponsor(s)	Conflict of inter- est*
Freidlin et al. 2013 ¹⁶⁴	New challenges for comparative effectiveness in oncology: Choice of primary end points for randomized clinical trials	NR	PFS versus OS	not disclosed	none declared
Kaklamani 2016 ¹⁶⁵	Clinical implications of the progression-free survival endpoint for treatment of hormone receptor-positive advanced breast cancer	NR	PFS versus OS	Novartis	yes (honoraria)
Korn et al. 2011 ¹⁶⁶	Overall survival as the outcome for randomized clinical trials with effective subsequent therapies	commen- tary/theoretical article	how OS outcomes should be interpreted with increasing availability of effective ther- apies that can be given subsequently to the treatment assigned in an RCT	not disclosed	none declared

NR=narrative review; OS=overall survival; PFS=progression-free survival; RCT=randomized controlled trials * (Mainly) regarding pharmaceutical companies.

8.3.3 Findings regarding legal, social and ethical issues

8.3.3.1 Legal issues

We did not identify any publication regarding the legal issue (see Subsection 6.1.4).

8.3.3.2 Social issues

Regarding the social issue (see Subsection 6.1.2), we identified one patient survey on treatment satisfaction (Darden et al. 2018¹⁵⁷). The authors performed an observational, cross-sectional, web-based survey in patients with ABC or MBC receiving PAL plus an AI or PAL plus FUL in a real-world setting. They recruited 604 patients with self-reported HR+/HER2- ABC/MBC in six countries (Argentina, Canada, Denmark, Germany, the Netherlands and the USA). They used a self-designed questionnaire including 16 questions – on patient expectations of therapy, feelings about side effects and satisfaction with therapy – from the "Cancer Therapy Satisfaction Questionnaire" (cited in Darden et al.¹⁵⁷). The study was conducted under the direction of Pfizer and also funded by Pfizer.

The survey may contribute to the social issue as it includes questions on patients' expectations of therapy and if expectations were met. However, the authors mainly reported overall findings and only selectively presented detailed results. As they did a cross-sectional survey, there was no follow-up. All participants were taking PAL + FUL or PAL + AI at the time of the survey, most of them for over half a year.

8.3.3.3 Ethical issues

We identified nine publications as evidence for the ethical issue (see Subsection 6.1.1). Four systematic reviews^{159 161-163} and two narrative reviews^{164 165} dealt with PFS as a surrogate outcome and the relation between PFS (or TTP) and OS (and HrQoL in one review). One systematic review¹⁵⁸ investigated the role of HrQoL as an endpoint in studies with ABC patients, another¹⁶⁰ the role of PRO in industry-sponsored MBC trials. One theoretical commentary investigated the role and interpretation of OS results when subsequent therapies are available.

The six systematic reviews are of mixed quality. The literature search strategy, databases included and study selection criteria were clearly described by most of the reviews. Two did not clearly state the aim of their study, and only four studies described the studies included in adequate detail.

Not all of the publications specifically dealt with PAL, either because of the publication type (theoretical article) or because of the publication year or because of the date of literature search being too early in time.

shows the PRISMA flow chart for publications on organisational issues.

Figure 10: PRISMA flow chart for publications on organisational issues – refers to HTA key

question 9 and organisational issue Subsection 6.1.3

* Literature search for safety (extended analysis) and health economics as well as ethical, social, legal and organisational aspects. † Refers to the literature search for efficacy, effectiveness and safety (RCTs) as well as other sources

described in Section 7.2.

8.4.2 Evidence table

Sixteen publications could be identified. They are described in Table 13, Table 14 and Table 15.

Table 13: Evidence table for observational studies on organisational issues – refers to HTA key question 9 and organisational issue Subsection 6.1.3

Author Year	Title	Study design	Study size*	Relevant organisational issues	Sponsor(s)	Conflict of interest†
Gold- schmidt et al. 2018 ¹⁶⁷	Current Treatment Patterns Among Postmenopausal Women with HR+/HER2? Metastatic Breast Cancer in US Community Oncology Practices: An Observational Study	(Probably) retro- spective cohort study	401	therapy duration and treat- ment sequencing	Novartis	yes (employment relationship, consulting)
Guerin et al. 2018 ¹¹⁹	Monitoring of Hematologic, Cardiac, and Hepatic Function in Post-Menopausal Women with HR+/HER2- Metastatic Breast Cancer	retrospective cohort study	401	management of toxicities and monitoring require- ments	Novartis	yes (employment relationship, consulting)
Kish et al. 2018 ¹²⁸	Real-world evidence analysis of palbociclib prescribing pat- terns for patients with advanced/metastatic breast cancer treated in community oncology practice in the USA one year post approval	retrospective cohort study	763	management of toxicities and monitoring require- ments	Pfizer	yes (employment relationship)
Momper et al. 2019 ¹³²	Interaction Between Cyclosporine and Palbociclib in a Renal Transplant Patient: Case Report and Pharmacokinetic Per- spective	Case report	1	"Preemptive dose reduc- tions of these immunosup- pressive agents are war- ranted if palbociclib is initi- ated, followed by close monitoring of blood concen- trations."	none de- clared	none declared
Rossi et al. 2019 ¹⁶⁸	Clinical outcomes after palbociclib with or without endocrine therapy in postmenopausal women with hormone receptor positive and HER2-negative metastatic breast cancer en- rolled in the TREnd trial	prospective co- hort study	105	effectiveness of standard subsequent line therapies after PAL	Pfizer	yes (research funding, consult- ing)
Watson et al. 2019 ¹⁴⁸	Real-World Experience of Palbociclib-Induced Adverse Events and Compliance With Complete Blood Count Monitor- ing in Women With Hormone Receptor-Positive/HER2- Negative Metastatic Breast Cancer	retrospective cohort study	64	management of toxicities and monitoring require- ments	not dis- closed	none declared

Table 13: Evidence table for observational studies on organisational issues (continued)

Xi et al. 2019 ¹⁵⁰	Retrospective Analysis of Treatment Patterns and Effective- ness of Palbociclib and Subsequent Regimens in Metastatic Breast Cancer	retrospective cohort study	200	treatment sequencing (sub- sequent therapies after dis- ease progression on PAL)	not dis- closed	yes for some of the authors (research funding, honoraria)
----------------------------------	---	-------------------------------	-----	--	--------------------	--

PAL=palbociclib; HR=hormone receptor; HER2=human epidermal growth factor receptor 2; US=United States

* Number of patients.

† (Mainly) regarding pharmaceutical companies.

Table 14: Evidence table for narrative reviews on organisational issues - refers to HTA key question 9 and organisational issue Subsection 6.1.3

Author Year	Title	Relevant organisational issues	Sponsor(s)	Conflict of interest*
Boyle et al. 2018 ¹⁶⁹	Hormone receptor positive, HER2 negative metastatic breast cancer: Impact of CDK4/6 inhibitors on the current treatment paradigm	management of toxicities and monitor- ing requirements	Novartis	yes for some of the authors (con- sulting, honoraria, etc.)
Spring et al. 2017 ¹⁷⁰	Clinical Management of Potential Toxicities and Drug Interactions Related to Cyclin-Dependent Kinase 4/6 Inhibitors in Breast Cancer: Practical Considerations and Recommendations	management of toxicities and monitor- ing requirements	National Cancer In- stitute grant	none declared
Thill et al. 2018 ³⁴	Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer	management of toxicities and monitor- ing requirements	none de- clared	yes (consulting, honoraria)
Spring et al. 2019 ¹⁷¹	CDK 4/6 Inhibitors in Breast Cancer: Current Controversies and Future Direc- tions	monitoring requirements and subse- quent therapies	National Cancer In- stitute grant	not disclosed
Ettl 2019 ¹⁷²	Management of adverse events due to cyclin-dependent kinase 4/6 inhibitors	management of toxicities and monitor- ing requirements	not dis- closed	yes (honoraria, travel support)
Rossi et al. 2018 ¹⁷³	Managing advanced HR-positive, HER2-negative breast cancer with CDK4/6 inhibitors in post-menopausal patients: is there a best sequence?	treatment sequencing	none de- clared	yes for some of the authors (con- sulting, grant)

CDK=cyclin-dependent kinase; HR=hormone receptor; HER2=human epidermal growth factor receptor 2 * (Mainly) regarding pharmaceutical companies.

Table 15: Evidence table for guidelines on organisational issues – refers to HTA key question 9 and organisational issue Subsection 6.1.3

Author Year	Title	Relevant organisa- tional issues	Sponsor(s)	Conflict of interest*
Rugo et al. ¹⁷⁴ 2016	Endocrine Therapy for Hormone Receptor-Positive Metastatic Breast Can- cer: American Society of Clinical Oncology Guideline	Includes monitoring requirements	not disclosed	yes for some of the au- thors (research fund- ing, honoraria, etc.)
Bellet et al. ³² 2019	Palbociclib and ribociclib in breast cancer: consensus workshop on the man- agement of concomitant medication	Includes monitoring requirements	Novartis, Pfizer, Grünenthal, Esteve and Kyowa Hakko Kirin	yes (research funding, honoraria, etc.)
Cardoso et al. ²¹ 2018	4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4)	Management of toxici- ties	none declared	yes for some of the au- thors (research fund- ing, honoraria, etc.)

ESO-ESMO=European School of Oncology – European Society for Medical Oncology; ABC=advanced breast cancer * (Mainly) regarding pharmaceutical companies.

8.4.3 Findings regarding organisational issues

We identified 16 publications as evidence for the organisational issue (see Subsection 6.1.3). The ESO-ESMO international consensus guidelines²¹ included a section with recommendations on supportive and palliative care including management of toxicities, the American Society of Clinical Oncology Guideline¹⁷⁴ included recommendations for PAL on dosing and blood count monitoring. The documentation of an expert consensus³² gave a detailed overview of drug interactions of PAL (and RIB) and resulting management requirements. Six narrative reviews^{34 169-173} were identified that also dealt with the management of toxicities, monitoring requirements and treatment sequencing, some in more detail. The seven included observational studies^{119 128 132 148 150 167 168} (mostly retrospective cohort studies) added real-world data on monitoring frequency, dosing patterns/toxicity induced dose reductions and treatment sequencing.

9 Feasibility HTA

Despite the short time that PAL is available on the market, there is a substantial body of evidence to inform an HTA report. However, this is characterised by a small amount of direct evidence (Only two RCTs studied PAL in combination with LET and only one RCT studied PAL in combination with FUL.²⁴ ⁴⁵) but a considerable amount of indirect evidence and secondary literature.

Efficacy, effectiveness and safety

In the light of this evidence, quantitative comparisons between the treatments of interest (see PICOs, Chapter 5) can only be done indirectly through NMAs. Covering the entire scope of the research questions on efficacy, effectiveness and safety – two PICOs (that differ with regard to population) and the five defined outcomes – requires ten separate NMAs. Data availability and feasibility issues for the NMAs with regard to outcomes can be summarised based on the preliminary extraction of study characteristics as follows:

- PFS and TTP were the most frequently reported outcomes in the included studies. PFS is usually defined as the time until tumour progression, death or censoring, whereas TTP only measures the time until tumour progression. NMA is feasible and we suggest combining PFS and TTP because:
 1) trials in consideration for the potential NMA sometimes defined TTP as "time to progression or death", similar to the definition of PFS; 2) PFS and TTP are often used interchangeably and recent MAs have also combined both outcomes.^{175 176}
- About half of the studies under consideration reported OS data. Therefore, there is a risk that we cannot provide a full treatment network due to missing links between the studies.¹ We might have to include heterogeneous populations in the final NMA or combine different treatment dosages in one. However, such adjustments would increase the risk of violating transitivity and the risk of bias.
- QoL data are only reported in about 20 per cent of the studies under consideration. In addition, the instruments and reported subscales for measuring QoL differed substantially between the studies. If the individual scales are comparable (for example,. they measure the same factors, like pain), the results can be standardised and used in the NMA. The feasibility of constructing a meaningful treatment network for the outcome QoL remains to be determined in a detailed analysis of the trial data. The substantial heterogeneity between the included studies might produce a high risk of bias.

¹ This refers to data availability only and does not imply any other consequences regarding this outcome. Even in the absence of a full treatment network, all OS analyses that are feasible, based on the available data, will be conducted.
- Most studies reported AEs. Consequently, an NMA will be possible. The validity of the results will depend on the definition of the AEs in the primary studies. It might be appropriate to conduct multiple NMAs on different grades of severity of individual AEs (further increasing the number of NMAs) or on different AEs pooled by grade of severity.
- Most studies also reported the rates of treatment discontinuations due to AEs. Since there are no severity levels, an NMA of discontinuation rates will be easier to conduct and will have a lower risk of bias than the analysis of AEs alone.

Our systematic literature review identified twelve NMAs that included PAL in one of the relevant combinations in their treatment networks and compared (a varying amount of) treatment alternatives for women with HR+/HER2- LA/MBC.¹⁷⁷⁻¹⁸⁸ All NMAs used PFS as the main outcome, three also included OS (but could not assess it in an NMA), two also included QoL (but could not asses it in an NMA) and one also assessed AEs. None of the NMAs that included OS, QoL or AEs included all of the treatment alternatives relevant for the present assessment.

In conclusion, we can confirm that for most or at least some of the relevant outcomes, NMAs are feasible from a statistical point of view. However, the reliability and risk of bias of the results will vary depending on the outcomes and on the quality of the data provided in the primary studies.

With regard to the safety outcomes, the identified NRSs provide additional evidence for the assessment of PAL, such as rare side effects and adverse drug interactions. However, all but two of the cohort studies and all of the case reports, case series and single arm studies only included patients treated with PAL. The two studies that do include other treatment groups did not sufficiently fulfil the PICO definitions of this HTA report with regard to PAL treatment combinations or with regard to comparators.^{119 143} Therefore, no comparative conclusions can be drawn from the NRSs. Rather, they might give a valuable additional insight into the safety profile of PAL by incorporating real-world data.

Costs, cost effectiveness and budget impact

With regard to the HTA key question on the costs of PAL, no published study with (current) drug prices and prescribing volumes for Switzerland has been identified (for the suggested approach to obtain these data, see Chapter 10). Neither was a study identified that precisely describes all medical resource consumption and unit costs potentially relevant for an economic modelling study (drug costs, inpatient and outpatient treatment costs, follow-up treatment costs, potential costs for hospitalisation, costs for side effects, etc.) for Switzerland.

With regard to cost effectiveness, several economic models are available but limited to the extent that they did not cover all comparators defined in PICO 1 and PICO 2. PAL plus LET (PICO 1) was compared

with either RIB plus LET or LET alone. PAL plus FUL (PICO 2) was covered in only one study and was compared with a pbo.¹⁵⁶ The only study that was conducted for the Swiss context used a Markov model comparing PAL plus LET with LET alone and included drug costs, follow-up treatment costs and costs of neutropenia.⁸

We did not identify a study regarding the budget impact of a potential withdrawal of PAL from reimbursement. There is one rough estimation of the budget impact of introducing PAL plus LET (compared with LET alone) that was calculated for Switzerland.⁸ ¹⁵⁴ The suggested approach is described in Chapter 10.

Legal, social and ethical issues, organisational issues

No evidence for the legal issue (Section 6.1) was obtained from the literature review and only one patient survey yielded some information on the social issue (for suggested approaches for addressing the legal and social issues, see Chapter 10). Sufficient literature was identified to address the ethical issue. A reasonable amount of literature was also found for answering the organisational issue.

Conclusion

Conducting an HTA is feasible, albeit with a considerable amount of uncertainty due to indirect evidence.

10 Outlook

Efficacy, effectiveness and safety

In sum, up to ten NMAs will have to be conducted to cover the research questions (see Chapter 9). If the construction of complete treatment networks (covering all treatments included in PICO) based on robust data is not possible for certain outcomes, analyses of incomplete networks will be conducted where a PAL treatment combination is included. If, for certain outcomes, the reported data are insufficient in terms of quantity or quality to support an NMA (complete or incomplete), a short narrative description of the available data can be provided and the evidence gap described.

For the NMA we suggest using a Bayesian approach. The whole analysis will be conducted in the R environment. We will calculate random effects models as well as a fixed effect model. The fixed effect model will be compared with the corresponding random effects model using leverage plots and the deviance information criterion. The model with the better fit will be used for further interpretation. Further, we will perform a check for inconsistency by comparing an inconsistency model with a consistency model. If the inconsistency model shows a better fit, then we assume inconsistency in the network and we will adapt our model subsequently. Due to the similarities of PFS and TTP we will combine these outcomes into a single NMA. If the final model shows signs of low transitivity, we will conduct individual NMAs for both outcomes. Another challenge in regard to PFS and TTP is that some studies exclusively reported the median time to event in combination with confidence intervals. Since pooled results of median time-to-event data tend to be biased in meta-analyses, we will exclusively use studies that report hazard ratios (HR).¹⁸⁹ ²

For the NRSs on safety outcomes, we suggest conducting a brief quality assessment of the included cohort studies based on the ROBINS-I tool.¹⁹¹ Further, we will provide extended evidence tables containing study results.

² However, meta-analyses of HR can be prone to bias in themselves if the proportional hazards assumption is violated.¹⁹⁰ A violation of this assumption can be shown by non-constant HR that might lead to intersecting survival curves in extreme cases. Studies with non-proportional HRs are usually excluded in meta-analyses. An alternative is to use the fractional polynomial method that can provide unbiased results.¹⁹⁰ However, substantially more resources are required if this method is applied since the Kaplan-Meier curves of the individual studies would need to be extracted and analysed; to our knowledge, none of the currently available NMAs on treatments for patients with HR+/HER2- LA/MBC has used the fractional polynomial method. We therefore do not suggest using this method.

Costs, cost effectiveness and budget impact

Regarding drug costs we suggest accessing data from Tarifpool¹⁹² with the support of the FOPH. In addition, we will consult the SL for current prices.

The cost effectiveness analysis will include direct costs (to the extent that they are available for Switzerland) and will be conducted from the perspective of the OKP. A first approach would be to adapt the existing Swiss model, as envisaged at the time of starting the scoping report.^{8 154} This entails a detailed analysis of the complete model data, structure and inputs (it was agreed that they could be obtained from the study authors). However, extensive enlargements will be necessary to cover all PICO interventions and comparators and additional targeted literature searches and expert consultations for utility data, further cost data and possibly other relevant input and output parameters will have to be conducted.

For conducting the budget impact analysis, we propose to develop two or three scenarios in consultation with the FOPH and one or two clinical experts (to obtain estimates on shifts in the proportion of drugs prescribed after a withdrawal of PAL, for example a shift to another drug or shift to monotherapy). Calculations will include changes in overall drug costs.

Legal, social and ethical issues, organisational issues

We propose to interview one or two juridical experts with regard to the legal issue and to summarise the results of the interviews. With regard to the social issue, it might be desirable to conduct some patient interviews. This could shed more light on the expectations and needs of a very vulnerable patient group often confronted with end-of-life situations. For the ethical issue, we propose to provide a written summary and discussion of the results of included studies. For organisational issues, we propose to draft a concise tabular summary of recommendations from guidelines and narrative reviews regarding monitoring requirements, toxicities/drug interaction management in consultation with a clinical expert. We further suggest supplementing this with a tabular summary on related evidence from the identified real-world data.

Changes with regard to PICO and HTA key questions as a result of the expert review

Some of the reviewers pointed out that the other two CDK 4/6 inhibitors should be included as interventions (rather than as comparators only). The suggested PICO for the full HTA report was therefore adapted. For reasons of feasibility, some other changes had to be implemented with regard to comparators as well as with regard to the HTA key and additional questions. The revised PICOs are shown in the following figures and the revised HTA key questions in the paragraphs thereafter.

Table 16: Revised PICO 1

P:	Pre/peri- (under ovarian suppression) or postmenopausal women with HR+/HER2- LA/MBC who have not relapsed or progressed during or within 12 months after adjuvant ET and have not received prior ET for advanced-stage disease
l:	 PAL + AI (ANA, LET or EXE) RIB + AI (ANA, LET or EXE) ABE + AI (ANA, LET or EXE)
C:	 Either of the other two CDK4/6 inhibitors + AI (ANA, LET or EXE) AI (ANA, LET or EXE)
O:	 Efficacy and effectiveness HrQoL or other PROMs, or both (critical outcome) OS (critical outcome) PFS (important outcome*) Safety Treatment-related AEs (critical outcome) Treatment discontinuation due to AEs (critical outcome) Economics Costs for complete treatment path including costs after stopping treatment with PAL, RIB or ABE Costs of (severe) side effects Budget impact ICER, incremental/total costs, QALYs and LYG

ABE=abemaciclib; AE=adverse event; AI=aromatase inhibitor; ANA=anastrozole; ET=endocrine therapy; EXE=exemestane; HER2=human epidermal growth factor receptor 2; HR=hormone receptor; HrQoL=healthrelated quality of life; ICER =incremental cost effectiveness ratio; LET=letrozole; LYG=life years gained; PAL=palbociclib; OS=overall survival; PFS=progression-free survival; PICO=population, intervention, comparator, outcome; PROM=patient-reported outcome measure; QALY=quality-adjusted life year; RIB=ribociclib * PFS can be seen as a surrogate parameter and was therefore ranked as important (but not critical).

Table 17: Revised PICO 2

P:	Pre/peri- (under ovarian suppression) or postmenopausal women with HR+/HER2- LA/MBC who have relapsed or progressed during or within 12 months after adjuvant ET or during ET for advanced-stage disease
I:	 PAL + FUL RIB + FUL ABE + FUL
C:	 Either of the other two CDK4/6 inhibitors + FUL FUL
0:	 Efficacy and effectiveness HrQoL or other PROMs, or both (critical outcome) OS (critical outcome) PFS (important outcome*) Safety Treatment-related AEs (critical outcome) Treatment discontinuation due to AEs (critical outcome) Economics Costs for complete treatment path including costs after stopping treatment with PAL, RIB or ABE Costs of (severe) side effects Budget impact ICER, incremental/total costs, QALYs and LYG

ABE=abemaciclib; AE=adverse event; ET=endocrine therapy; FUL=fulvestrant; HER2=human epidermal growth factor receptor 2; HR=hormone receptor; HrQoL=health-related quality of life; ICER =incremental cost effectiveness ratio; LYG=life years gained; OS=overall survival; PAL=palbociclib; PICO=population, intervention, comparator, outcome; PFS=progression-free survival; PROM=patient-reported outcome measure; QALY=quality-adjusted life vear; RB=ribociclib
 * PFS can be seen as a surrogate parameter and was therefore ranked as important (but not critical).

Revised HTA key questions

- 1. What is the effectiveness/efficacy of PAL, RIB and ABE in combination with an AI (ANA, LET or EXE) in women with HR+/HER2- LA/MBC who have not received prior ET for advanced-stage disease compared with each other and with alternative treatment options*?
- 2. What is the effectiveness/efficacy of PAL, RIB and ABE in combination with FUL in women with HR+/HER2- LA/MBC with disease progression/recurrence during/after prior ET compared with each other and with alternative treatment options*?
- 3. Are PAL, RIB and ABE in combination with an AI (ANA, LET or EXE) in women with HR+/HER2-LA/MBC who have not received prior ET for advanced-stage disease safe compared with each other and with alternative treatment options*?

- 4. Are PAL, RIB and ABE in combination with FUL in women with HR+/HER2- LA/MBC with disease progression/recurrence during/after prior ET safe compared with each other and with alternative treatment options*?
- 5. What are the costs of PAL, RIB and ABE?
- 6. What is the budget impact of a potential change in the reimbursement status of either PAL, RIB or ABE in the two above-mentioned combinations and indications†?
- 7. How cost-effective is the addition of PAL, RIB or ABE to treatment with an AI (PICO 1) or to treatment with FUL (PICO 2)?
- 8. Are there legal, social or ethical issues related to PAL, RIB or ABE in the two above-mentioned combinations and indications[‡]?
- 9. Are there organisational issues related to PAL, RIB or ABE in the two above-mentioned combi-

nations and indications‡?

* Due to the lack of direct comparisons of CDK4/6 inhibitors in clinical trials, these questions will be answered in an NMA. To enable the construction of meaningful treatment networks, the NMA will include as additional comparators alternative treatment options that were defined in accordance with international guidelines and in consultation with a Swiss clinical oncology expert and that are listed in the original PICOs in Chapter 5.

† The scenarios that might have to be analysed are to be defined during conduct of a full HTA based on the results of the cost effectiveness analysis.

‡ We refined and specified this question during the scoping phase in consultation with the FOPH within the additional questions in Section 6.1. For (further) suggested revision see the following paragraph. *Revised additional question(s)*

It was suggested to only include ethical and organisational issues. No change was made to the ethical issue. The following change was made to the organisational issue:

How does PAL, RIB or ABE combination therapy (either with an AI or with FUL as indicated) modify the need for other technologies and use of resources?

Revised title

To reflect the above mentioned changes accordingly, the title of the full HTA report will be changed to: Palbociclib (Ibrance®), ribociclib (Kisqali®) and abemaciclib (Verzenios®) for the treatment of hormone receptor (HR)-positive, human epidermal growth factor (HER2)-negative advanced breast cancer

11 References

- 1. swissmedic Swiss Agency for Therapeutic Products. Product information, 2019. (search substance palbociclib) Available from: <u>http://www.swissmedicinfo.ch/</u>
- Cristofanilli M, Turner NC, Bondarenko I, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. *Lancet Oncology* 2016;17(4):425-39. doi: https://dx.doi.org/10.1016/S1470-2045(15)00613-0
- 3. Turner NC, Slamon DJ, Ro J, et al. Overall Survival with Palbociclib and Fulvestrant in Advanced Breast Cancer. *New England Journal of Medicine* 2018;379(20):1926-36. doi: <u>https://dx.doi.org/10.1056/NEJMoa1810527</u>
- 4. Finn RS, Martin M, Rugo HS, et al. Palbociclib and Letrozole in Advanced Breast Cancer. *The New England journal of medicine* 2016;375(20):1925-36. doi: 10.1056/NEJMoa1607303 [published Online First: 2016/12/14]
- 5. Harbeck N, Iyer S, Turner N, et al. Quality of life with palbociclib plus fulvestrant in previously treated hormone receptor-positive, HER2-negative metastatic breast cancer: patient-reported outcomes from the PALOMA-3 trial. *Annals of Oncology* 2016;27(6):1047-54. doi: <u>https://dx.doi.org/10.1093/annonc/mdw139</u>
- 6. Rugo HS, Dieras V, Gelmon KA, et al. Impact of palbociclib plus letrozole on patient-reported healthrelated quality of life: results from the PALOMA-2 trial. *Annals of oncology : official journal of the European Society for Medical Oncology* 2018;29(4):888-94. doi: 10.1093/annonc/mdy012 [published Online First: 2018/01/24]
- Mamiya H, Tahara RK, Tolaney SM, et al. Cost-effectiveness of palbociclib in hormone receptorpositive advanced breast cancer. *Annals of Oncology* 2017;28(8):1825-31. doi: <u>https://dx.doi.org/10.1093/annonc/mdx201</u>
- Matter-Walstra K, Ruhstaller T, Klingbiel D, et al. Palbociclib as a first-line treatment in oestrogen receptor-positive, HER2-negative, advanced breast cancer not cost-effective with current pricing: a health economic analysis of the Swiss Group for Clinical Cancer Research (SAKK). Breast cancer research and treatment 2016;158(1):51-57. doi: 10.1007/s10549-016-3822-z [published Online First: 2016/06/10]
- Sweegers C. Farmacotherapeutisch rapport palbociclib (Ibrance®) bij de behandeling van hormoonrecep-tor-positieve, HER2-negatieve gevorderde of gemetastaseerde borstkanker: Onderdeel van de initiële beoordeling van specialistische geneesmiddelen. Diemen, NL, 2017.
- Dieterich M, Stubert J, Reimer T, et al. Influence of lifestyle factors on breast cancer risk. *Breast care (Basel, Switzerland)* 2014;9(6):407-14. doi: 10.1159/000369571 [published Online First: 2015/03/12]
- 11. Arndt V, Feller A, Hauri D, et al. Swiss Cancer Report 2015: Current situation and developments. Neuchâtel, 2016.; Available from: <u>https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases/publications.assetdetail.428987.html</u>.
- Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. *Archives of pathology & laboratory medicine* 2007;131(1):18-43. doi: 10.1043/1543-2165(2007)131[18:Asocco]2.0.Co;2 [published Online First: 2007/01/01]
- Brufsky AM. Delaying Chemotherapy in the Treatment of Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer. *Clinical Medicine Insights Oncology* 2015;9:137-47. doi: 10.4137/cmo.S31586 [published Online First: 2016/01/23]
- 14. Hon JD, Singh B, Sahin A, et al. Breast cancer molecular subtypes: from TNBC to QNBC. *American journal of cancer research* 2016;6(9):1864-72. [published Online First: 2016/10/12]

- 15. Ullah MF. Chapter 4. Breast Cancer: Current Perspectives on the Disease Status. In: Ahmad A, ed. Breast Cancer Metastasis and Drug Resistance Advances in Experimental Medicine and Biology Springer Nature Switzerland AG 2013, 2019, 2019:51-64.
- Diebold J, Aebi S. Prognostische und pr\u00e4diktive Marker beim Mammakarzinom: Zwei Jahre Erfahrung mit Genexpressionsanalysen in Luzern. Schweizer Zeitschrift f\u00fcr Onkologie 2014;1:10-4.
- Lumachi F, Luisetto G, Basso SM, et al. Endocrine therapy of breast cancer. *Current medicinal chemistry* 2011;18(4):513-22. doi: 10.2174/092986711794480177 [published Online First: 2010/12/15]
- Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. *Lancet (London, England)* 2005;365(9472):1687-717. doi: 10.1016/s0140-6736(05)66544-0 [published Online First: 2005/05/17]
- Carson E, Dear R. Advanced breast cancer: An update to systemic therapy. *Australian journal of general practice* 2019;48(5):278-83. doi: 10.31128/ajgp-10-18-4729 [published Online First: 2019/05/28]
- Peto R, Davies C, Godwin J, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. *Lancet (London, England)* 2012;379(9814):432-44. doi: 10.1016/s0140-6736(11)61625-5 [published Online First: 2011/12/14]
- Cardoso F, Senkus E, Costa A, et al. 4th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4)dagger. Annals of oncology : official journal of the European Society for Medical Oncology 2018;29(8):1634-57. doi: 10.1093/annonc/mdy192 [published Online First: 2018/07/23]
- Cardoso F, Costa A, Norton L, et al. ESO-ESMO 2nd international consensus guidelines for advanced breast cancer (ABC2). *Breast (Edinburgh, Scotland)* 2014;23(5):489-502. doi: 10.1016/j.breast.2014.08.009 [published Online First: 2014/09/24]
- Cardoso F, Spence D, Mertz S, et al. Global analysis of advanced/metastatic breast cancer: Decade report (2005-2015). *Breast (Edinburgh, Scotland)* 2018;39:131-38. doi: 10.1016/j.breast.2018.03.002 [published Online First: 2018/04/22]
- 24. McArthur HL, Morris PG. Aromatase inhibitor strategies in metastatic breast cancer. *International journal of women's health* 2010;1:67-72. [published Online First: 2010/11/13]
- 25. Onkopedia. Mammakarzinom der Frau <u>https://www.onkopedia.com/de/onkopedia/guidelines/mammakarzinom-der-</u> <u>frau/@@guideline/html/index.html</u> Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V.; 2018; Available from: <u>https://www.onkopedia.com/de/onkopedia/guidelines/mammakarzinom-der-</u> <u>frau/@@guideline/html/index.html</u> accessed 22.04.2020.
- 26. Thill M, Jackisch C, Janni W, et al. AGO Recommendations for the Diagnosis and Treatment of Patients with Locally Advanced and Metastatic Breast Cancer: Update 2019. *Breast care (Basel, Switzerland)* 2019;14(4):247-55. doi: 10.1159/000500999 [published Online First: 2019/09/29]
- 27. Asghar U, Witkiewicz AK, Turner NC, et al. The history and future of targeting cyclin-dependent kinases in cancer therapy. *Nat Rev Drug Discov* 2015;14(2):130-46. doi: 10.1038/nrd4504 [published Online First: 2015/01/31]
- 28. Xu H, Yu S, Liu Q, et al. Recent advances of highly selective CDK4/6 inhibitors in breast cancer. *Journal of hematology & oncology* 2017;10(1):97. doi: 10.1186/s13045-017-0467-2 [published Online First: 2017/04/26]
- Spring L, Bardia A, Modi S. Targeting the cyclin D-cyclin-dependent kinase (CDK) 4/6retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: rationale, current status, and future directions. *Discov Med* 2016;21(113):65-74. [published Online First: 2016/02/21]

- 30. European Medicine Agency. Summary of the European public assessment report (EPAR) for Ibrance.; Available from: <u>https://www.ema.europa.eu/en/medicines/human/EPAR/ibrance</u>.
- 31. Yu Y, Loi CM, Hoffman J, et al. Physiologically Based Pharmacokinetic Modeling of Palbociclib. *J Clin Pharmacol* 2017(1552-4604 (Electronic)) doi: 10.1002/jcph.792
- Bellet M, Ahmad F, Villanueva R, et al. Palbociclib and ribociclib in breast cancer: consensus workshop on the management of concomitant medication. *Therapeutic advances in medical* oncology 2019;11 doi: 10.1177/1758835919833867
- Marra A, Curigliano G. Are all cyclin-dependent kinases 4/6 inhibitors created equal? npj Breast Cancer 2019;5(1):27. doi: 10.1038/s41523-019-0121-y
- 34. Thill M, Schmidt M. Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. *Therapeutic advances in medical oncology* 2018;10:1758835918793326. doi: 10.1177/1758835918793326 [published Online First: 2018/09/12]
- 35. Shah PD, Dickler MN. Endocrine therapy for advanced breast cancer. *Clin Adv Hematol Oncol* 2014;12(4):214-23. [published Online First: 2014/07/09]
- 36. HTA Core Model Version 3.0 2016; Available from: <u>https://eunethta.eu/wp-content/uploads/2018/03/HTACoreModel3.0-1.pdf</u>.
- 37. SR 832.102 Verordnung vom 27. Juni 1995 über die Krankenversicherung (KVV); Available from: <u>https://www.admin.ch/opc/de/classified-compilation/19950219/index.html#id-1-4-3-4a</u> accessed 18.02.2020.
- 38. Veritas Health Innovation. Covidence systematic review software. available at <u>www.covidence.org</u>.
- Marshall I, Kuiper J, Wallace B. RobotReviewer: Evaluation of a System for Automatically Assessing Bias in Clinical Trials. *Journal of the American Medical Informatics Association* 2016;1(23):193-201.
- 40. Soboczenski F, Trikalinos TA, Kuiper J, et al. Machine learning to help researchers evaluate biases in clinical trials: a prospective, randomized user study. *BMC Med Inform Decis Mak* 2019;19(1):96. doi: 10.1186/s12911-019-0814-z [published Online First: 2019/05/10]
- 41. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ (Clinical research ed)* 2016(366):I4898.
- Evers S, Goossens M, de Vet H, et al. Criteria list for assessment of methodological quality of economic evaluations: Consensus on Health Economic Criteria. *Int J Technol Assess Health Care* 2005;21(2):240-45.
- 43. Finn RS, Crown J, Lang I, et al. Overall survival results from the randomized phase II study of palbociclib (P) in combination with letrozole (L) vs letrozole alone for frontline treatment of ER+/HER2-advanced breast cancer (PALOMA-1; TRIO-18). *Journal of Clinical Oncology* 2017;35(15)
- 44. Bell T, Crown JP, Lang I, et al. Impact of palbociclib plus letrozole on pain severity and pain interference with daily activities in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer as first-line treatment. *Current Medical Research & Opinion* 2016;32(5):959-65. doi: <u>https://dx.doi.org/10.1185/03007995.2016.1157060</u>
- 45. Finn RS, Crown JP, Lang I, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. *The Lancet Oncology* 2015;16(1):25-35. doi: 10.1016/s1470-2045(14)71159-3 [published Online First: 2014/12/20]
- 46. Rugo HS, Finn RS, Dieras V, et al. Palbociclib plus letrozole as first-line therapy in estrogen receptorpositive/human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up. *Breast cancer research and treatment* 2019;174(3):719-29. doi: 10.1007/s10549-018-05125-4 [published Online First: 2019/01/12]

- 47. Rugo HS, Turner NC, Finn RS, et al. Palbociclib plus endocrine therapy in older women with HR+/HER2- advanced breast cancer: a pooled analysis of randomised PALOMA clinical studies. *European journal of cancer (Oxford, England : 1990)* 2018;101:123-33. doi: 10.1016/j.ejca.2018.05.017 [published Online First: 2018/07/28]
- 48. Dieras V, Harbeck N, Joy AA, et al. Palbociclib with Letrozole in Postmenopausal Women with ER+/HER2- Advanced Breast Cancer: Hematologic Safety Analysis of the Randomized PALOMA-2 Trial. Oncologist 2019 doi: <u>https://dx.doi.org/10.1634/theoncologist.2019-0019</u>
- 49. Durairaj C, Ruiz-Garcia A, Gauthier ER, et al. Palbociclib has no clinically relevant effect on the QTc interval in patients with advanced breast cancer. *Anti-Cancer Drugs* 2018;29(3):271-80. doi: <u>https://dx.doi.org/10.1097/CAD.00000000000589</u>
- 50. Verma S, Bartlett CH, Schnell P, et al. Palbociclib in Combination With Fulvestrant in Women With Hormone Receptor-Positive/HER2-Negative Advanced Metastatic Breast Cancer: Detailed Safety Analysis From a Multicenter, Randomized, Placebo-Controlled, Phase III Study (PALOMA-3). Oncologist 2016;21(10):1165-75.
- 51. Loibl S, Demichele A, Turner NM, et al. Impact of palbociclib plus fulvestrant on patient reported general health status compared with fulvestrant alone in HR + , HER2- metastatic breast cancer. *Annals of Oncology* 2016;27 doi: 10.1093/annonc/mdw365.39
- 52. Cristofanilli M, DeMichele A, Giorgetti C, et al. Predictors of prolonged benefit from palbociclib plus fulvestrant in women with endocrine-resistant hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer in PALOMA-3. *European Journal of Cancer* 2018;104:21-31. doi: <u>https://dx.doi.org/10.1016/j.ejca.2018.08.011</u>
- 53. Hortobagyi GN, Stemmer SM, Burris HA, et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. *The New England journal of medicine* 2016;375(18):1738-48. doi: 10.1056/NEJMoa1609709 [published Online First: 2016/11/03]
- 54. Janni W, Alba E, Bachelot T, et al. First-line ribociclib plus letrozole in postmenopausal women with HR+, HER2- advanced breast cancer: Tumor response and pain reduction in the phase 3 MONALEESA-2 trial. *Breast Cancer Research & Treatment* 2018;169(3):469-79. doi: <u>https://dx.doi.org/10.1007/s10549-017-4658-x</u>
- 55. Hortobagyi GN, Stemmer SM, Burris HA, et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. *Annals of Oncology* 2018;29(7):1541-47. doi: https://dx.doi.org/10.1093/annonc/mdy155
- 56. Verma S, O'Shaughnessy J, Burris HA, et al. Health-related quality of life of postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer treated with ribociclib + letrozole: results from MONALEESA-2. *Breast cancer research and treatment* 2018;170(3):535-45. doi: 10.1007/s10549-018-4769-z [published Online First: 2018/04/15]
- 57. Slamon DJ, Neven P, Chia S, et al. Phase III Randomized Study of Ribociclib and Fulvestrant in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: MONALEESA-3. *Journal of Clinical Oncology* 2018;36(24):2465-72. doi: <u>https://dx.doi.org/10.1200/JCO.2018.78.9909</u>
- 58. Sledge GW, Jr., Toi M, Neven P, et al. MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. *Journal of Clinical Oncology* 2017;35(25):2875-84. doi: <u>https://dx.doi.org/10.1200/JCO.2017.73.7585</u>
- 59. Kaufman PA, Toi M, Neven P, et al. Health-Related Quality of Life in MONARCH 2: Abemaciclib plus Fulvestrant in Hormone Receptor-Positive, HER2-Negative Advanced Breast Cancer After Endocrine Therapy. *Oncologist* 2019;24:24. doi: <u>https://dx.doi.org/10.1634/theoncologist.2019</u>. 0551
- 60. Sledge GW, Jr., Toi M, Neven P, et al. The Effect of Abemaciclib Plus Fulvestrant on Overall Survival in Hormone Receptor-Positive, ERBB2-Negative Breast Cancer That Progressed on Endocrine

Therapy-MONARCH 2: A Randomized Clinical Trial. *JAMA Oncology* 2019;29:29. doi: <u>https://dx.doi.org/10.1001/jamaoncol.2019.4782</u>

- 61. Yardley DA, Noguchi S, Pritchard KI, et al. Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Advances in Therapy 2013;30(10):870-84. doi: <u>https://dx.doi.org/10.1007/s12325-013-0060-1</u>
- 62. Piccart M, Hortobagyi GN, Campone M, et al. Everolimus plus exemestane for hormone-receptorpositive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2. *Annals of Oncology* 2014;25(12):2357-62. doi: <u>https://dx.doi.org/10.1093/annonc/mdu456</u>
- 63. Burris HA, 3rd, Lebrun F, Rugo HS, et al. Health-related quality of life of patients with advanced breast cancer treated with everolimus plus exemestane versus placebo plus exemestane in the phase 3, randomized, controlled, BOLERO-2 trial. *Cancer* 2013;119(10):1908-15. doi: https://dx.doi.org/10.1002/cncr.28010
- 64. Campone M, Beck JT, Gnant M, et al. Health-related quality of life and disease symptoms in postmenopausal women with HR(+), HER2(-) advanced breast cancer treated with everolimus plus exemestane versus exemestane monotherapy. *Current Medical Research & Opinion* 2013;29(11):1463-73. doi: <u>https://dx.doi.org/10.1185/03007995.2013.836078</u>
- 65. Baselga J, Im SA, Iwata H, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet Oncology* 2017;18(7):904-16. doi: <u>https://dx.doi.org/10.1016/S1470-2045(17)30376-5</u>
- 66. Campone M, Im SA, Iwata H, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant for postmenopausal, hormone receptor-positive, human epidermal growth factor receptor 2-negative, advanced breast cancer: Overall survival results from BELLE-2. *European Journal of Cancer* 2018;103:147-54. doi: <u>https://dx.doi.org/10.1016/j.ejca.2018.08.002</u>
- 67. Di Leo A, Johnston S, Lee KS, et al. Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet Oncology* 2018;19(1):87-100. doi: <u>https://dx.doi.org/10.1016/S1470-2045(17)30688-5</u>
- 68. Robertson JFR, Cheung KL, Noguchi S, et al. Health-related quality of life from the FALCON phase III randomised trial of fulvestrant 500 mg versus anastrozole for hormone receptor-positive advanced breast cancer. *European Journal of Cancer* 2018;94:206-15. doi: <u>https://dx.doi.org/10.1016/j.ejca.2018.02.026</u>
- 69. Robertson JFR, Bondarenko IM, Trishkina E, et al. Fulvestrant 500 mg versus anastrozole 1 mg for hormone receptor-positive advanced breast cancer (FALCON): an international, randomised, double-blind, phase 3 trial. *Lancet (London, England)* 2016;388(10063):2997-3005. doi: <u>https://dx.doi.org/10.1016/S0140-6736(16)32389-3</u>
- 70. Kim JY, Im SA, Jung KH, et al. Fulvestrant plus goserelin versus anastrozole plus goserelin versus goserelin alone for hormone receptor-positive, HER2-negative tamoxifen-pretreated premenopausal women with recurrent or metastatic breast cancer (KCSG BR10-04): a multicentre, open-label, three-arm, randomised phase II trial (FLAG study). *European Journal of Cancer* 2018;103:127-36. doi: <u>https://dx.doi.org/10.1016/j.ejca.2018.08.004</u>
- 71. Johnston S, Pippen J, Jr., Pivot X, et al. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. *Journal of Clinical Oncology* 2009;27(33):5538-46. doi: <u>https://dx.doi.org/10.1200/JCO.2009.23.3734</u>
- 72. Mehta RS, Barlow WE, Albain KS, et al. Overall Survival with Fulvestrant plus Anastrozole in Metastatic Breast Cancer. New England Journal of Medicine 2019;380(13):1226-34. doi: <u>https://dx.doi.org/10.1056/NEJMoa1811714</u>
- 73. Mehta RS, Barlow WE, Albain KS, et al. Combination anastrozole and fulvestrant in metastatic breast cancer. New England Journal of Medicine 2012;367(5):435-44. doi: <u>https://dx.doi.org/10.1056/NEJMoa1201622</u>

- 74. Osborne CK, Neven P, Dirix LY, et al. Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase II study. *Clinical Cancer Research* 2011;17(5):1147-59. doi: <u>https://dx.doi.org/10.1158/1078-0432.CCR-10-1869</u>
- 75. Johnston SR, Kilburn LS, Ellis P, et al. Fulvestrant plus anastrozole or placebo versus exemestane alone after progression on non-steroidal aromatase inhibitors in postmenopausal patients with hormone-receptor-positive locally advanced or metastatic breast cancer (SoFEA): a composite, multicentre, phase 3 randomised trial. *Lancet Oncology* 2013;14(10):989-98. doi: https://dx.doi.org/10.1016/S1470-2045(13)70322-X
- 76. Burstein HJ, Cirrincione CT, Barry WT, et al. Endocrine therapy with or without inhibition of epidermal growth factor receptor and human epidermal growth factor receptor 2: a randomized, double-blind, placebo-controlled phase III trial of fulvestrant with or without lapatinib for postmenopausal women with hormone receptor-positive advanced breast cancer-CALGB 40302 (Alliance). *Journal of Clinical Oncology* 2014;32(35):3959-66. doi: <u>https://dx.doi.org/10.1200/JCO.2014.56.7941</u>
- 77. Martin M, Loibl S, von Minckwitz G, et al. Phase III trial evaluating the addition of bevacizumab to endocrine therapy as first-line treatment for advanced breast cancer: the letrozole/fulvestrant and avastin (LEA) study. *Journal of Clinical Oncology* 2015;33(9):1045-52. doi: <u>https://dx.doi.org/10.1200/JCO.2014.57.2388</u>
- 78. Paul D, Vukelja SJ, Ann Holmes F, et al. Randomized phase-II evaluation of letrozole plus dasatinib in hormone receptor positive metastatic breast cancer patients. NPJ Breast Cancer 2019;5:36. doi: <u>https://dx.doi.org/10.1038/s41523-019-0132-8</u>
- 79. Ibrahim NK, Yariz KO, Bondarenko I, et al. Randomized phase II trial of letrozole plus anti-MUC1 antibody AS1402 in hormone receptor-positive locally advanced or metastatic breast cancer. *Clinical Cancer Research* 2011;17(21):6822-30. doi: <u>https://dx.doi.org/10.1158/1078-0432.CCR-11-1151</u>
- 80. Adelson K, Ramaswamy B, Sparano JA, et al. Randomized phase II trial of fulvestrant alone or in combination with bortezomib in hormone receptor-positive metastatic breast cancer resistant to aromatase inhibitors: a New York Cancer Consortium trial. NPJ Breast Cancer 2016;2:16037. doi: https://dx.doi.org/10.1038/npjbcancer.2016.37
- 81. Johnston S, Basik M, Hegg R, et al. Inhibition of EGFR, HER2, and HER3 signaling with AZD8931 in combination with anastrozole as an anticancer approach: Phase II randomized study in women with endocrine-therapy-naive advanced breast cancer. *Breast Cancer Research & Treatment* 2016;160(1):91-99.
- 82. Zaman K, Winterhalder R, Mamot C, et al. Fulvestrant with or without selumetinib, a MEK 1/2 inhibitor, in breast cancer progressing after aromatase inhibitor therapy: a multicentre randomised placebo-controlled double-blind phase II trial, SAKK 21/08. *European Journal of Cancer* 2015;51(10):1212-20. doi: <u>https://dx.doi.org/10.1016/j.ejca.2015.03.016</u>
- 83. Baselga J, Morales SM, Awada A, et al. A phase II study of combined ridaforolimus and dalotuzumab compared with exemestane in patients with estrogen receptor-positive breast cancer. *Breast Cancer Research & Treatment* 2017;163(3):535-44. doi: <u>https://dx.doi.org/10.1007/s10549-017-4199-3</u>
- 84. Krop IE, Mayer IA, Ganju V, et al. Pictilisib for oestrogen receptor-positive, aromatase inhibitorresistant, advanced or metastatic breast cancer (FERGI): a randomised, double-blind, placebocontrolled, phase 2 trial. *Lancet Oncology* 2016;17(6):811-21. doi: <u>https://dx.doi.org/10.1016/S1470-2045(16)00106-6</u>
- 85. Musolino A, Campone M, Neven P, et al. Phase II, randomized, placebo-controlled study of dovitinib in combination with fulvestrant in postmenopausal patients with HR+, HER2- breast cancer that had progressed during or after prior endocrine therapy. *Breast Cancer Research* 2017;19(1):18. doi: https://dx.doi.org/10.1186/s13058-017-0807-8
- 86. Schmid P, Zaiss M, Harper-Wynne C, et al. Fulvestrant Plus Vistusertib vs Fulvestrant Plus Everolimus vs Fulvestrant Alone for Women With Hormone Receptor-Positive Metastatic Breast

Cancer: The MANTA Phase 2 Randomized Clinical Trial. *JAMA Oncology* 2019;5(11):1556–63. doi: <u>https://dx.doi.org/10.1001/jamaoncol.2019.2526</u>

- 87. Andre F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. New England Journal of Medicine 2019;380(20):1929-40. doi: <u>https://dx.doi.org/10.1056/NEJMoa1813904</u>
- 88. Jiang Z, Li W, Hu X, et al. Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): a randomised, double-blind, placebocontrolled, phase 3 trial. *Lancet Oncology* 2019;20(6):806-15. doi: <u>https://dx.doi.org/10.1016/S1470-2045(19)30164-0</u>
- 89. Park YH, Kim TY, Kim GM, et al. Palbociclib plus exemestane with gonadotropin-releasing hormone agonist versus capecitabine in premenopausal women with hormone receptor-positive, HER2-negative metastatic breast cancer (KCSG-BR15-10): a multicentre, open-label, randomised, phase 2 trial. *Lancet Oncology* 2019 doi: <u>https://dx.doi.org/10.1016/S1470-2045(19)30565-0</u>
- 90. Lipton A, Leitzel K, Chaudri-Ross HA, et al. Serum TIMP-1 and response to the aromatase inhibitor letrozole versus tamoxifen in metastatic breast cancer. *Journal of Clinical Oncology* 2008;26(16):2653-8. doi: <u>https://dx.doi.org/10.1200/JCO.2007.15.4336</u>
- 91. Bachelot T, Bourgier C, Cropet C, et al. Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. *Journal of Clinical Oncology* 2012;30(22):2718-24. doi: <u>https://dx.doi.org/10.1200/JCO.2011.39.0708</u>
- 92. Dieras V, Rugo HS, Schnell P, et al. Long-term Pooled Safety Analysis of Palbociclib in Combination With Endocrine Therapy for HR+/HER2- Advanced Breast Cancer. *Journal of the National Cancer Institute* 2019;111(4):419-30. doi: <u>https://dx.doi.org/10.1093/jnci/djy109</u>
- 93. Tripathy D, Im SA, Colleoni M, et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. *Lancet Oncology* 2018;19(7):904-15. doi: <u>https://dx.doi.org/10.1016/S1470-2045(18)30292-4</u>
- 94. Im SA, Lu YS, Bardia A, et al. Overall Survival with Ribociclib plus Endocrine Therapy in Breast Cancer. New England Journal of Medicine 2019;381(4):307-16. doi: <u>https://dx.doi.org/10.1056/NEJMoa1903765</u>
- 95. Johnston S, Martin M, Di Leo A, et al. MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. *NPJ Breast Cancer* 2019;5:5. doi: <u>https://dx.doi.org/10.1038/s41523-018-0097-z</u>
- 96. Ohno S, Rai Y, Iwata H, et al. Three dose regimens of fulvestrant in postmenopausal Japanese women with advanced breast cancer: results from a double-blind, phase II comparative study (FINDER1). Annals of Oncology 2010;21(12):2342-7. doi: https://dx.doi.org/10.1093/annonc/mdq249
- 97. Pritchard KI, Rolski J, Papai Z, et al. Results of a phase II study comparing three dosing regimens of fulvestrant in postmenopausal women with advanced breast cancer (FINDER2). *Breast Cancer Research & Treatment* 2010;123(2):453-61. doi: <u>https://dx.doi.org/10.1007/s10549-010-1022-9</u>
- 98. Ellis MJ, Llombart-Cussac A, Feltl D, et al. Fulvestrant 500 mg Versus Anastrozole 1 mg for the First-Line Treatment of Advanced Breast Cancer: Overall Survival Analysis From the Phase II FIRST Study. Journal of Clinical Oncology 2015;33(32):3781-7. doi: <u>https://dx.doi.org/10.1200/JCO.2015.61.5831</u>
- 99. Robertson JF, Lindemann JP, Llombart-Cussac A, et al. Fulvestrant 500 mg versus anastrozole 1 mg for the first-line treatment of advanced breast cancer: follow-up analysis from the randomized 'FIRST' study. *Breast Cancer Research & Treatment* 2012;136(2):503-11. doi: <u>https://dx.doi.org/10.1007/s10549-012-2192-4</u>

- 100. Robertson JF, Llombart-Cussac A, Rolski J, et al. Activity of fulvestrant 500 mg versus anastrozole 1 mg as first-line treatment for advanced breast cancer: results from the FIRST study. *Journal* of Clinical Oncology 2009;27(27):4530-5. doi: <u>https://dx.doi.org/10.1200/JCO.2008.21.1136</u>
- 101. Johnston SR, Semiglazov VF, Manikhas GM, et al. A phase II, randomized, blinded study of the farnesyltransferase inhibitor tipifarnib combined with letrozole in the treatment of advanced breast cancer after antiestrogen therapy. *Breast Cancer Research & Treatment* 2008;110(2):327-35.
- 102. Tryfonidis K, Basaran G, Bogaerts J, et al. A European Organisation for Research and Treatment of Cancer randomized, double-blind, placebo-controlled, multicentre phase II trial of anastrozole in combination with gefitinib or placebo in hormone receptor-positive advanced breast cancer (NCT00066378). European Journal of Cancer 2016;53:144-54. doi: https://dx.doi.org/10.1016/j.ejca.2015.10.012
- 103. Wolff AC, Lazar AA, Bondarenko I, et al. Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer. *Journal of Clinical Oncology* 2013;31(2):195-202. doi: <u>https://dx.doi.org/10.1200/JCO.2011.38.3331</u>
- 104. Dickler MN, Barry WT, Cirrincione CT, et al. Phase III Trial Evaluating Letrozole As First-Line Endocrine Therapy With or Without Bevacizumab for the Treatment of Postmenopausal Women With Hormone Receptor-Positive Advanced-Stage Breast Cancer: CALGB 40503 (Alliance). *Journal of Clinical Oncology* 2016;34(22):2602-9. doi: https://dx.doi.org/10.1200/JCO.2015.66.1595
- 105. Robertson JF, Ferrero JM, Bourgeois H, et al. Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomised, controlled, double-blind, phase 2 trial. *Lancet Oncology* 2013;14(3):228-35. doi: <u>https://dx.doi.org/10.1016/S1470-2045(13)70026-3</u>
- 106. Yardley DA, Ismail-Khan RR, Melichar B, et al. Randomized phase II, double-blind, placebocontrolled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. *Journal of Clinical Oncology* 2013;31(17):2128-35. doi: <u>https://dx.doi.org/10.1200/JCO.2012.43.7251</u>
- 107. Yamamoto Y, Ishikawa T, Hozumi Y, et al. Randomized controlled trial of toremifene 120 mg compared with exemestane 25 mg after prior treatment with a non-steroidal aromatase inhibitor in postmenopausal women with hormone receptor-positive metastatic breast cancer. BMC Cancer 2013;13:239. doi: <u>https://dx.doi.org/10.1186/1471-2407-13-239</u>
- 108. Iwata H, Masuda N, Ohno S, et al. A randomized, double-blind, controlled study of exemestane versus anastrozole for the first-line treatment of postmenopausal Japanese women with hormone-receptor-positive advanced breast cancer. *Breast Cancer Research & Treatment* 2013;139(2):441-51. doi: <u>https://dx.doi.org/10.1007/s10549-013-2573-3</u>
- 109. Ban M, Mise BP, Majic A, et al. Efficacy and safety of palbociclib in heavily pretreated patients with HR+/HER2- metastatic breast cancer. *Future Oncology* 2018;14(6):537-44. doi: <u>https://dx.doi.org/10.2217/fon-2017-0491</u>
- 110. Battisti NML, Kingston B, King J, et al. Palbociclib and endocrine therapy in heavily pretreated hormone receptor-positive HER2-negative advanced breast cancer: the UK Compassionate Access Programme experience. *Breast Cancer Research & Treatment* 2019;174(3):731-40. doi: 10.1007/s10549-019-05134-x
- 111. Bromberg DJ, Valenzuela M, Nanjappa S, et al. Hyperuricemia in 2 Patients Receiving Palbociclib for Breast Cancer. *Cancer Control* 2016;23(1):59-60.
- 112. Brufsky A, Mitra D, Davis KL, et al. Treatment Patterns and Outcomes Associated With Palbociclib Plus Letrozole for Postmenopausal Women With HR(+)/HER2(-) Advanced Breast Cancer Enrolled in an Expanded Access Program. *Clinical breast cancer* 2019;19(5):317-25 e4. doi: 10.1016/j.clbc.2019.04.005

- 113. Bui TBV, Burgers DM, Agterof MJ, et al. Real-World Effectiveness of Palbociclib Versus Clinical Trial Results in Patients With Advanced/Metastatic Breast Cancer That Progressed on Previous Endocrine Therapy. *Breast Cancer* 2019;13:1,17822E+15. doi: <u>https://dx.doi.org/10.1177/1178223418823238</u>
- 114. Clifton K, Min Y, Kimmel J, et al. Progression-free survival (PFS) and toxicities of palbociclib in a geriatric population. *Breast Cancer Research & Treatment* 2019;175(3):667-74. doi: https://dx.doi.org/10.1007/s10549-019-05181-4
- 115. du Rusquec P, Palpacuer C, Campion L, et al. Efficacy of palbociclib plus fulvestrant after everolimus in hormone receptor-positive metastatic breast cancer. *Breast Cancer Research & Treatment* 2018;168(2):559-66. doi: <u>https://dx.doi.org/10.1007/s10549-017-4623-8</u>
- 116. Gao J, Adams RP, Swain SM. Does CDKN2A loss predict palbociclib benefit? *Current Oncology* 2015;22(6):e498-501. doi: <u>https://dx.doi.org/10.3747/co.22.2700</u>
- 117. Gong J, Cho M, Yu KW, et al. A single institution experience with palbociclib toxicity requiring dose modifications. *Breast Cancer Research & Treatment* 2018;168(2):381-87. doi: <u>https://dx.doi.org/10.1007/s10549-017-4606-9</u>
- 118. Gowarty JL, Herrington JD. Verapamil as a culprit of palbociclib toxicity. *Journal of Oncology Pharmacy Practice* 2019;25(3):743-46. doi: <u>https://dx.doi.org/10.1177/1078155218761798</u>
- 119. Guerin A, Goldschmidt D, Small T, et al. Monitoring of Hematologic, Cardiac, and Hepatic Function in Post-Menopausal Women with HR+/HER2- Metastatic Breast Cancer. Advances in Therapy 2018;35(8):1251-64. doi: <u>https://dx.doi.org/10.1007/s12325-018-0740-y</u>
- 120. Guillemois S, Patsouris A, Peyraga G, et al. Cutaneous and Gastrointestinal Leukocytoclastic Vasculitis Induced by Palbociclib in a Metastatic Breast Cancer Patient: A Case Report. *Clinical breast cancer* 2018;18(5):e755-e58. doi: <u>https://dx.doi.org/10.1016/j.clbc.2018.07.006</u>
- 121. Harrold EC, Peters NM, Williams LJ, et al. Palbociclib-induced posterior reversible encephalopathy syndrome: A previously unreported toxicity. *Journal of Oncology Practice* 2019;15(2):119-21. doi: 10.1200/JOP.18.00643
- 122. Herrscher H, Velten M, Leblanc J, et al. Fulvestrant and palbociclib combination in heavily pretreated hormone receptor-positive, HER2-negative metastatic breast cancer patients. *Breast Cancer Research & Treatment* 2019 doi: <u>https://dx.doi.org/10.1007/s10549-019-05439-x</u>
- 123. Hoste G, Punie K, Wildiers H, et al. Palbociclib in highly pretreated metastatic ER-positive HER2negative breast cancer. *Breast Cancer Research & Treatment* 2018;171(1):131-41. doi: <u>https://dx.doi.org/10.1007/s10549-018-4827-6</u>
- 124. Iwamoto N, Aruga T, Kuroi K, et al. Efficacy and toxicity of palbociclib in heavily treated patients with metastatic breast cancer. *Annals of Cancer Research and Therapy* 2018;26(2):105-09. doi: 10.4993/acrt.26.105
- 125. Jazieh KA, Budd GT, Dalpiaz N, et al. Can CDK4/6 inhibitors cause fatal lung injury? *Expert Rev* Anticancer Ther 2019:1-3. doi: <u>https://dx.doi.org/10.1080/14737140.2019.1674651</u>
- 126. Karagounis T, Vallurupalli M, Nathan N, et al. Stevens-Johnson syndrome-like eruption from palbociclib in a patient with metastatic breast cancer. JAAD Case Reports 2018;4(5):452-54. doi: <u>https://dx.doi.org/10.1016/j.jdcr.2017.12.015</u>
- 127. Kawamoto T, Shikama N, Sasai K. Severe acute radiation-induced enterocolitis after combined palbociclib and palliative radiotherapy treatment. *Radiotherapy & Oncology* 2019;131:240-41. doi: <u>https://dx.doi.org/10.1016/j.radonc.2018.09.020</u>
- 128. Kish JK, Ward MA, Garofalo D, et al. Real-world evidence analysis of palbociclib prescribing patterns for patients with advanced/metastatic breast cancer treated in community oncology practice in the USA one year post approval. *Breast Cancer Research* 2018;20(1):37. doi: <u>https://dx.doi.org/10.1186/s13058-018-0958-2</u>
- 129. Masuda N, Nishimura R, Takahashi M, et al. Palbociclib in combination with letrozole as first-line treatment for advanced breast cancer: A Japanese phase II study. *Cancer Science* 2018;109(3):803-13. doi: <u>https://dx.doi.org/10.1111/cas.13507</u>

- 130. Maurer C, Ferreira AR, Martel S, et al. Endocrine therapy and palbociclib within a compassionate use program in heavily pretreated hormone receptor-positive, HER2-negative metastatic breast cancer. *Breast (Edinburgh, Scotland)* 2018;39:14-18. doi: <u>https://dx.doi.org/10.1016/j.breast.2018.02.027</u>
- 131. Messer JA, Ekinci E, Patel TA, et al. Enhanced dermatologic toxicity following concurrent treatment with palbociclib and radiation therapy: A case report. *Reports of Practical Oncology & Radiotherapy* 2019;24(3):276-80. doi: <u>https://dx.doi.org/10.1016/j.rpor.2019.03.001</u>
- 132. Momper JD, Yang J, Kerr J, et al. Interaction Between Cyclosporine and Palbociclib in a Renal Transplant Patient: Case Report and Pharmacokinetic Perspective. *Journal of Pharmacy Practice* 2019:8,9719E+14. doi: <u>https://dx.doi.org/10.1177/0897190019851887</u>
- 133. Nelson KL, Stenehjem D, Driscoll M, et al. Fatal Statin-Induced Rhabdomyolysis by Possible Interaction with Palbociclib. *Frontiers in Oncology* 2017;7:150. doi: <u>https://dx.doi.org/10.3389/fonc.2017.00150</u>
- 134. Nersesjan V, Hansen K, Krag T, et al. Palbociclib in combination with simvastatin induce severe rhabdomyolysis: a case report. *BMC Neurology* 2019;19(1):247. doi: <u>https://dx.doi.org/10.1186/s12883-019-1490-4</u>
- 135. Nwabudike SM, Edwards CV, Akinboro O, et al. Cyclin-Dependent Kinase 4/6 Inhibitor (Palbociclib) Induced Aplastic Anemia in a Patient with Metastatic Breast Cancer. *Case Reports in Hematology Print* 2018;2018:9249506. doi: <u>https://dx.doi.org/10.1155/2018/9249506</u>
- 136. Pinard J, Patel M, Granter SR, et al. Subacute Cutaneous Lupus Erythematosus Induced by Palbociclib. *Journal of Cutaneous Medicine & Surgery* 2018;22(3):341-43. doi: https://dx.doi.org/10.1177/1203475417752369
- 137. Pizzuti L, Giordano A, Michelotti A, et al. Palbociclib plus endocrine therapy in HER2 negative, hormonal receptor-positive, advanced breast cancer: A real-world experience. *Journal of Cellular Physiology* 2019;234(6):7708-17. doi: <u>https://dx.doi.org/10.1002/jcp.27832</u>
- 138. Raiss H, Peron J, Tartas S, et al. Palbociclib-Induced Thrombotic Microangiopathy in Metastatic Breast Cancer Patient Surviving for 18 Years: Case Report and Review of the Literature. *Clinical breast cancer* 2018;18(3):e263-e66. doi: <u>https://dx.doi.org/10.1016/j.clbc.2017.10.001</u>
- Roberts BA, Ibrahim M, Stone E. Elevated liver function tests in a patient on palbociclib and fulvestrant. *Journal of Community and Supportive Oncology* 2018;16(6):E277-E79. doi: 10.12788/jcso.0437
- 140. Schickli MA, Berger MJ, Lustberg M, et al. Time to treatment failure of palbociclib and letrozole as second-line therapy or beyond in hormone receptor-positive advanced breast cancer. *Journal of Oncology Pharmacy Practice* 2019;25(6):1374-80. doi: https://dx.doi.org/10.1177/1078155218794847
- 141. Stearns V, Brufsky AM, Verma S, et al. Expanded-Access Study of Palbociclib in Combination With Letrozole for Treatment of Postmenopausal Women With Hormone Receptor-Positive, HER2-Negative Advanced Breast Cancer. *Clinical breast cancer* 2018;18(6):e1239-e45. doi: <u>https://dx.doi.org/10.1016/j.clbc.2018.07.007</u>
- 142. Tamura K, Mukai H, Naito Y, et al. Phase I study of palbociclib, a cyclin-dependent kinase 4/6 inhibitor, in Japanese patients. *Cancer Science* 2016;107(6):755-63. doi: <u>https://dx.doi.org/10.1111/cas.12932</u>
- 143. Tang DH, Li N, Du EX, et al. First-line treatment disruption among post-menopausal women with HR+/HER2- metastatic breast cancer: a retrospective US claims study. *Current Medical Research* & *Opinion* 2017;33(12):2137-43. doi: https://dx.doi.org/10.1080/03007995.2017.1390447
- 144. Taylor-Stokes G, Mitra D, Waller J, et al. Treatment patterns and clinical outcomes among patients receiving palbociclib in combination with an aromatase inhibitor or fulvestrant for HR+/HER2-negative advanced/metastatic breast cancer in real-world settings in the US: Results from the IRIS study. *Breast (Edinburgh, Scotland)* 2019;43:22-27. doi: https://dx.doi.org/10.1016/j.breast.2018.10.009

- 145. Varella L, Eziokwu AS, Jia X, et al. Real-world clinical outcomes and toxicity in metastatic breast cancer patients treated with palbociclib and endocrine therapy. *Breast Cancer Research & Treatment* 2019;176(2):429-34. doi: <u>https://dx.doi.org/10.1007/s10549-019-05176-1</u>
- 146. Vuppalanchi R, Saxena R, Storniolo AMV, et al. Pseudocirrhosis and liver failure in patients with metastatic breast cancer after treatment with palbociclib. *Hepatology* 2017;65(5):1762-64. doi: <u>https://dx.doi.org/10.1002/hep.28720</u>
- 147. Waller J, Mitra D, Mycock K, et al. Real-World Treatment Patterns and Clinical Outcomes in Patients Receiving Palbociclib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced or Metastatic Breast Cancer in Argentina: The IRIS Study. Journal of Global Oncology 2019;5:JGO1800239. doi: https://dx.doi.org/10.1200/JGO.18.00239
- 148. Watson GA, Deac O, Aslam R, et al. Real-World Experience of Palbociclib-Induced Adverse Events and Compliance With Complete Blood Count Monitoring in Women With Hormone Receptor-Positive/HER2-Negative Metastatic Breast Cancer. *Clinical breast cancer* 2019;19(1):e186-e94. doi: <u>https://dx.doi.org/10.1016/j.clbc.2018.09.002</u>
- 149. Wilkie J, Schickli MA, Berger MJ, et al. Progression-Free Survival for Real-World Use of Palbociclib in Hormone Receptor-Positive Metastatic Breast Cancer. *Clinical breast cancer* 2019 doi: <u>https://dx.doi.org/10.1016/j.clbc.2019.06.010</u>
- 150. Xi J, Oza A, Thomas S, et al. Retrospective Analysis of Treatment Patterns and Effectiveness of Palbociclib and Subsequent Regimens in Metastatic Breast Cancer. *Journal of the National Comprehensive* Cancer Network 2019;17(2):141-47. doi: https://dx.doi.org/10.6004/jnccn.2018.7094
- 151. Galve-Calvo E, Gonzalez-Haba E, Gostkorzewicz J, et al. Cost-effectiveness analysis of ribociclib versus palbociclib in the first-line treatment of HR+/HER2- advanced or metastatic breast cancer in Spain. *ClinicoEcon* 2018;10:773-90. doi: <u>https://dx.doi.org/10.2147/CEOR.S178934</u>
- 152. Mistry R, May JR, Suri G, et al. Cost-Effectiveness of Ribociclib plus Letrozole Versus Palbociclib plus Letrozole and Letrozole Monotherapy in the First-Line Treatment of Postmenopausal Women with HR+/HER2- Advanced or Metastatic Breast Cancer: A U.S. Payer Perspective. *J* Manag Care Spec Pharm 2018;24(6):514-23. doi: https://dx.doi.org/10.18553/jmcp.2018.24.6.514
- 153. Raphael J, Helou J, Pritchard KI, et al. Palbociclib in hormone receptor positive advanced breast cancer: A cost-utility analysis. *European Journal of Cancer* 2017;85:146-54. doi: <u>https://dx.doi.org/10.1016/j.ejca.2017.08.018</u>
- 154. Matter-Walstra K, Schwenkglenks M, Dedes KJ. Cost-effectiveness of palbociclib plus letrozole versus letrozole alone as a first-line treatment in women with oestrogen receptor-positive, HER2-negative, advanced breast cancer. Revised results for the Swiss health care setting. *Breast cancer research and treatment* 2017;163(3):635. doi: 10.1007/s10549-017-4209-5 [published Online First: 2017/03/23]
- 155. Zhang B, Long EF. Cost-effectiveness analysis of palbociclib or ribociclib in the treatment of advanced hormone receptor-positive, HER2-negative breast cancer. *Breast Cancer Research* & *Treatment* 2019;175(3):775-79. doi: <u>https://dx.doi.org/10.1007/s10549-019-05190-3</u>
- 156. Zhang Y, Zeng X, Deng H, et al. Cost-Effectiveness Analysis of Adding Palbociclib as a Second-Line Endocrine Therapy for HR(+)/HER2(-) Metastatic Breast Cancer From the US and Chinese Perspectives. *Clinical therapeutics* 2019;41(6):1175-85. doi: 10.1016/j.clinthera.2019.04.033 [published Online First: 2019/05/21]
- 157. Darden C, Mitra D, McSorley D, et al. Treatment satisfaction in women receiving palbociclib combination therapies for advanced/metastatic breast cancer. *Future Oncology* 2018;15(2):141-50. doi: <u>https://dx.doi.org/10.2217/fon-2018-0531</u>
- 158. Bottomley A, Therasse P. Quality of life in patients undergoing systemic therapy for advanced breast cancer. *Lancet Oncology* 2002;3(10):620-28. doi: 10.1016/S1470-2045(02)00876-8

- 159. Forsythe A, Chandiwana D, Barth J, et al. Is progression-free survival a more relevant endpoint than overall survival in first-line HR+/ HER2? Metastatic breast cancer? *Cancer management and research* 2018;10:1015-25. doi: 10.2147/CMAR.S162714
- 160. Krohe M, Hao Y, Lamoureux RE, et al. Patient-reported outcomes in metastatic breast cancer: A review of industry-sponsored clinical trials. *Breast Cancer: Basic and Clinical Research* 2016;10:93-102. doi: 10.4137/BCBCR.S39385
- 161. Lux MP, Bohme S, Hucherig S, et al. Surrogate threshold effect based on a meta-analysis for the predictive value of progression-free survival for overall survival in hormone receptor-positive, HER2-negative metastatic breast cancer. Breast Cancer Research & Treatment 2019;176(3):495-506. doi: https://dx.doi.org/10.1007/s10549-019-05262-4
- 162. Sherrill B, Amonkar M, Wu Y, et al. Relationship between effects on time-to-disease progression and overall survival in studies of metastatic breast cancer. *British journal of cancer* 2008;99(10):1572-78. doi: 10.1038/sj.bjc.6604759
- 163. Templeton AJ, Ace O, Amir E, et al. Influence of censoring on conclusions of trials for women with metastatic breast cancer. *European Journal of Cancer* 2015;51(6):721-24. doi: 10.1016/j.ejca.2014.12.016
- 164. Freidlin B, Abrams JS, Korn EL. New challenges for comparative effectiveness in oncology: Choice of primary end points for randomized clinical trials. *Journal of Comparative Effectiveness Research* 2013;2(5):469-81. doi: 10.2217/cer.13.50
- 165. Kaklamani VG. Clinical implications of the progression-free survival endpoint for treatment of hormone receptor-positive advanced breast cancer. *Oncologist* 2016;21(8):922-30. doi: 10.1634/theoncologist.2015-0366
- 166. Korn EL, Freidlin B, Abrams JS. Overall survival as the outcome for randomized clinical trials with effective subsequent therapies. *Journal of Clinical Oncology* 2011;29(17):2439-42. doi: 10.1200/JCO.2011.34.6056
- 167. Goldschmidt D, Dalal AA, Romdhani H, et al. Current Treatment Patterns Among Postmenopausal Women with HR+/HER2? Metastatic Breast Cancer in US Community Oncology Practices: An Observational Study. Advances in Therapy 2018;35(4):482-93. doi: 10.1007/s12325-018-0676-2
- 168. Rossi L, Biagioni C, McCartney A, et al. Clinical outcomes after palbociclib with or without endocrine therapy in postmenopausal women with hormone receptor positive and HER2-negative metastatic breast cancer enrolled in the TREnd trial. *Breast Cancer Research* 2019;21(1):71. doi: <u>https://dx.doi.org/10.1186/s13058-019-1149-5</u>
- 169. Boyle F, Beith J, Burslem K, et al. Hormone receptor positive, HER2 negative metastatic breast cancer: Impact of CDK4/6 inhibitors on the current treatment paradigm. Asia-Pacific Journal of Clinical Oncology 2018;14:03. Nov. doi: 10.1111/ajco.13064
- 170. Spring LM, Zangardi ML, Moy B, et al. Clinical Management of Potential Toxicities and Drug Interactions Related to Cyclin-Dependent Kinase 4/6 Inhibitors in Breast Cancer: Practical Considerations and Recommendations. Oncologist 2017;22(9):1039-48. doi: <u>https://dx.doi.org/10.1634/theoncologist.2017-0142</u>
- 171. Spring LM, Wander SA, Zangardi M, et al. CDK 4/6 Inhibitors in Breast Cancer: Current Controversies and Future Directions. *Current Oncology Reports* 2019;21(3):25. doi: <u>https://dx.doi.org/10.1007/s11912-019-0769-3</u>
- 172. Ettl J. Management of adverse events due to cyclin-dependent kinase 4/6 inhibitors. *Breast Care* 2019;14(2):86-92. doi: 10.1159/000499534
- 173. Rossi L, McCartney A, Risi E, et al. Managing advanced HR-positive, HER2-negative breast cancer with CDK4/6 inhibitors in post-menopausal patients: is there a best sequence? *Therapeutic advances in medical oncology* 2018;10:1,75884E+15. doi: <u>https://dx.doi.org/10.1177/1758835918815591</u>

- 174. Rugo HS, Rumble RB, Macrae E, et al. Endocrine Therapy for Hormone Receptor-Positive Metastatic Breast Cancer: American Society of Clinical Oncology Guideline. *Journal of Clinical Oncology* 2016;34(25):3069-103. doi: <u>https://dx.doi.org/10.1200/JCO.2016.67.1487</u>
- 175. Saad ED, Katz A. Progression-free survival and time to progression as primary end points in advanced breast cancer: often used, sometimes loosely defined. *Annals of Oncology* 2009;20(3):460-64. doi: 10.1093/annonc/mdn670
- 176. Forsythe A, Chandiwana D, Barth J, et al. Progression-free survival/time to progression as a potential surrogate for overall survival in HR+, HER2- metastatic breast cancer. *Breast Cancer: Targets and Therapy* 2018;Volume 10:69-78. doi: 10.2147/bctt.S162841
- 177. Huang HW, Huang LS, Xu QN, et al. CDK4/6 inhibition versus mTOR blockade as second-line strategy in postmenopausal patients with hormone receptor-positive advanced breast cancer: A network meta-analysis. *Medicine* 2019;98(1):e13909. doi: 10.1097/md.000000000013909 [published Online First: 2019/01/05]
- 178. Guo Q, Lin X, Ye L, et al. Comparative Efficacy of CDK4/6 Inhibitors Plus Aromatase Inhibitors Versus Fulvestrant for the First-Line Treatment of Hormone Receptor-Positive Advanced Breast Cancer: A Network Meta-Analysis. *Targeted Oncology* 2019;14(2):139-48. doi: <u>https://dx.doi.org/10.1007/s11523-019-00633-9</u>
- 179. Zhang T, Feng F, Zhao W, et al. Comparative efficacy of different targeted therapies plus fulvestrant for advanced breast cancer following progression on prior endocrine therapy: a network metaanalysis. *Cancer management and research* 2018;10:5869-80. doi: https://dx.doi.org/10.2147/CMAR.S176172
- 180. Petrelli F, Ghidini A, Pedersini R, et al. Comparative efficacy of palbociclib, ribociclib and abemaciclib for ER+ metastatic breast cancer: an adjusted indirect analysis of randomized controlled trials. *Breast cancer research and treatment* 2019;174(3):597-604. doi: 10.1007/s10549-019-05133-y [published Online First: 2019/01/20]
- 181. Chirila C, Mitra D, Colosia A, et al. Comparison of palbociclib in combination with letrozole or fulvestrant with endocrine therapies for advanced/metastatic breast cancer: network metaanalysis. *Current medical research and opinion* 2017;33(8):1457-66. doi: 10.1080/03007995.2017.1325730 [published Online First: 2017/05/04]
- 182. El Rassy E, Bakouny Z, Assi T, et al. Different inhibitors for the same target in metastatic luminal breast cancer: is there any difference? *Future Oncology* 2018;14(9):891-95. doi: <u>https://dx.doi.org/10.2217/fon-2017-0532</u>
- 183. Zhang T, Feng F, Zhao W, et al. Effect of first-line endocrine therapy in patients with hormonesensitive advanced breast cancer: a network meta-analysis. OncoTargets and therapy 2018;11:2647-56. doi: <u>https://dx.doi.org/10.2147/OTT.S165681</u>
- 184. Giuliano M, Schettini F, Rognoni C, et al. Endocrine treatment versus chemotherapy in postmenopausal women with hormone receptor-positive, HER2-negative, metastatic breast cancer: a systematic review and network meta-analysis. *The Lancet Oncology* 2019;20(10):1360-69. doi: 10.1016/s1470-2045(19)30420-6 [published Online First: 2019/09/09]
- 185. Ayyagari R, Tang D, Patterson-Lomba O, et al. Progression-free survival with endocrine-based therapies following progression on non-steroidal aromatase inhibitor among postmenopausal women with hormone receptor positive, human epidermal growth factor receptor-2 negative metastatic breast cancer: a network meta-analysis. *Current medical research and opinion* 2018;34(9):1645-52. doi: 10.1080/03007995.2018.1479246 [published Online First: 2018/05/22]
- 186. Ayyagari R, Tang D, Patterson-Lomba O, et al. Progression-free Survival With First-line Endocrinebased Therapies Among Postmenopausal Women With HR+/HER2- Metastatic Breast Cancer:: A Network Meta-analysis. *Clinical therapeutics* 2018;40(4):628-39.e3. doi: 10.1016/j.clinthera.2018.03.004 [published Online First: 2018/04/04]
- 187. Rossi V, Berchialla P, Giannarelli D, et al. Should All Patients With HR-Positive HER2-Negative Metastatic Breast Cancer Receive CDK 4/6 Inhibitor As First-Line Based Therapy? A Network

Meta-Analysis of Data from the PALOMA 2, MONALEESA 2, MONALEESA 7, MONARCH 3, FALCON, SWOG and FACT Trials. *Cancers (Basel)* 2019;11(11):26. doi: <u>https://dx.doi.org/10.3390/cancers11111661</u>

- 188. Wilson FR, Varu A, Mitra D, et al. Systematic review and network meta-analysis comparing palbociclib with chemotherapy agents for the treatment of postmenopausal women with HRpositive and HER2-negative advanced/metastatic breast cancer. *Breast cancer research and treatment* 2017;166(1):167-77. doi: 10.1007/s10549-017-4404-4 [published Online First: 2017/07/29]
- 189. Michiels S, Piedbois P, Burdett S, et al. Meta-analysis when only the median survival times are known: a comparison with individual patient data results. *Int J Technol Assess Health Care* 2005;21(1):119-25. doi: 10.1017/s0266462305050154
- 190. Jansen JP. Network meta-analysis of survival data with fractional polynomials. *BMC Med Res Methodol* 2011;11:61-61. doi: 10.1186/1471-2288-11-61
- 191. Schunemann HJ, Cuello C, Akl EA, et al. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. *Journal of clinical epidemiology* 2019;111:105-14. doi: 10.1016/j.jclinepi.2018.01.012 [published Online First: 2018/02/13]
- 192. COGE Controlling Gesundheitswesen GmbH. Tarifpool SASIS AG, Datenaufbereitung 2020.

12 Appendices

12.1 Search strings for clinical effectiveness and safety (Palbociclib versus comparators)

12.1.1 MEDLINE

A search was conducted on 14 November 2019 for publications in English and German. On 24 January 2020 an additional search was conducted using identical strings except for the language restriction, which was changed to French instead of English and German.

(Including Epub Ahead of Print, In-Process and Other Non-Indexed Citations and Daily - without Revisions from 2015 to 13 November 2019)

Search strategy:

- 1 exp Breast Neoplasms/ (331369)
- 2 ((breast* or mamma*) adj3 (cancer* or tumo?r* or carcinom* or adenom* or adeno?c* or sarcoma* or neoplasm* or malignan*)).mp. (464002)
- 3 1 or 2 (464011)
- 4 exp Neoplasm Metastasis/ (227947)
- 5 advanc*.mp. (925338)
- 6 metasta*.mp. (638632)
- 7 hormon* receptor*.mp. (38683)
- 8 HR*.ti,ab. (406584)
- 9 HR+.ti,ab. (266552)
- 10 exp Receptors, Estrogen/ (55110)
- 11 estrogen receptor*.mp. (65405)
- 12 oestrogen receptor*.mp. (6766)
- 13 ER*.ti,ab. (1431549)
- 14 ER+.ti,ab. (99225)
- 15 human epidermal growth factor* receptor*.mp. (10850)
- 16 HER2*.ti,ab. (31071)

- 17 HER 2*.ti,ab. (8534)
- 18 exp Receptor, ErbB-2/ (28942)
- 19 Erb-B2 receptor* tyrosine kinase.mp. (182)
- 20 ErbB2 receptor* tyrosine kinase.mp. (86)
- 21 Erb-B2*.ti,ab. (735)
- 22 Erb-B 2*.ti,ab. (188)
- 23 ERB?B2*.ti,ab. (7578)
- 24 ErbB-2*.ti,ab. (3956)
- 25 ERBB?2*.ti,ab. (7577)
- 26 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 (3260438)
- 27 3 and 26 (187678)
- 28 exp Cyclin-Dependent Kinase Inhibitor Proteins/ (28373)
- 29 cyclin-dependent kinase inhibitor*.mp. (31475)
- 30 CDI.ti,ab. (7828)
- 31 CKI.ti,ab. (740)
- 32 CDKI.ti,ab. (359)
- 33 CDK*.ti,ab. (39818)
- 34 palbociclib.mp. (1199)
- 35 Ibrance.mp. (36)
- 36 "pd 0332991".mp. (114)
- 37 pd 332991.mp. (5)
- 38 pd0332991.mp. (109)
- 39 pd332991.mp. (4)
- 40 "pf 00080665".mp. (0)
- 41 "pf00080665".mp. (0)
- 42 exp Aromatase Inhibitors/ (9989)

- 43 aromatase inhibitor*.mp. (10572)
- 44 estrogen synthetas* inhibitor*.mp. (9)
- 45 oestrogen synthetas* inhibitor*.mp. (0)
- 46 exp Anastrozole/ (1572)
- 47 anastr#zole.mp. (2507)
- 48 arimidex.mp. (263)
- 49 ici d1033.mp. (7)
- 50 icid1033.mp. (0)
- 51 trozolet.mp. (0)
- 52 zd 1033.mp. (2)
- 53 zd1033.mp. (6)
- 54 exp Letrozole/ (2400)
- 55 letrozole.mp. (3804)
- 56 cgs 20267.mp. (52)
- 57 cgs20267.mp. (7)
- 58 femar*.mp. (144)
- 59 loxifan.mp. (0)
- 60 exemestane.mp. (1684)
- 61 6 methyleneandrosta 1, 4 diene 3, 17 dione.mp. (4)
- 62 aromasin*.mp. (33)
- 63 fce 24304.mp. (15)
- 64 fce24304.mp. (1)
- 65 n#kides*.mp. (0)
- 66 pnu 155971.mp. (2)
- 67 pnu155971.mp. (0)
- 68 exp Fulvestrant/ (2590)
- 69 Fulvestrant.mp. (3490)

- 70 faslodex.mp. (236)
- 71 ici 182 780.mp. (2155)
- 72 ici 182780.mp. (561)
- 73 ici182780.mp. (262)
- 74 zd 182780.mp. (0)
- 75 zd182780.mp. (0)
- 76 zd 9238.mp. (0)
- 77 zd9238.mp. (0)
- 78 zm 182780.mp. (18)
- 79 zm182780.mp. (1)
- 80 exp Tamoxifen/ (23002)
- 81 Tamoxifen.mp. (30107)
- 82 ebefen.mp. (0)
- 83 kessar.mp. (0)
- 84 nsc 180973.mp. (10)
- 85 nsc180973.mp. (0)
- 86 tamoplac.mp. (0)
- 87 tamoxasta.mp. (0)
- 88 tamoxifene.mp. (217)
- 89 Ribociclib.mp. (425)
- 90 kisqali.mp. (13)
- 91 "lee 011*".mp. (1)
- 92 "lee011*".mp. (77)
- 93 "lee 11*".mp. (1)
- 94 "lee11*".mp. (1)
- 95 Abemaciclib.mp. (291)
- 96 bemaciclib.mp. (0)

- 97 ly 2835219.mp. (1)
- 98 ly2835219.mp. (44)
- 99 verzenio*.mp. (10)
- 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or
 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or
 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or
 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 or
 92 or 93 or 94 or 95 or 96 or 97 or 98 or 99 (115508)
- 10127 and 100 (18920)
- 102 limit 101 to clinical trial, all (2218)
- 103 randomized controlled trial.pt. (582441)
- 104 controlled clinical trial.pt. (97145)
- 105 randomized.ab. (555245)
- 106 placebo.ab. (230366)
- 107 clinical trials as topic.sh. (204110)
- 108 randomly.ab. (380871)
- 109 trial.ti. (254101)
- 110 103 or 104 or 105 or 106 or 107 or 108 or 109 (1451904)
- 111 exp animals/ not humans.sh. (5101654)
- 112110 not 111 (1329629)
- 113 101 and 112 (3534)
- 114 102 or 113 (3968)
- 115 limit 114 to (english or german) (3778)
- 116 remove duplicates from 115 (3356)
- 117 limit 101 to (meta analysis or "systematic review" or systematic reviews as topic) (339)
- (((comprehensive* or integrative or systematic*) adj3 (bibliographic* or review* or literature)) or (meta-analy* or metaanaly* or "research synthesis" or ((information or data) adj3 synthesis) or (data adj2 extract*))).ti,ab. or (cinahl or (cochrane adj3 trial*) or embase or medline or psyclit or (psycinfo not "psycinfo database") or pubmed or scopus or "sociological abstracts" or "web

of science").ab. or ("cochrane database of systematic reviews" or evidence report technology assessment or evidence report technology assessment summary).jn. or Evidence Report: Technology Assessment*.jn. or ((review adj5 (rationale or evidence)).ti,ab. and review.pt.) or meta-analysis as topic/ or Meta-Analysis.pt. (554136)

119101 and 118 (803)

120117 or 119 (803)

121 limit 120 to (english or german) (773)

122 remove duplicates from 121 (618)

123116 or 122 (3734)

12.1.2 EMBASE

A search was conducted on 15 November 2019 for publications in English and German. On 27 January 2020 an additional search was conducted using identical strings except for the language restriction, which was changed to French instead of English and German.

Search strategy:

No.	Query Results	Results
#114.	#109 OR #113	5'836
#113.	#103 AND ([cochrane review]/lim OR [systematic	869
	review]/lim OR [meta analysis]/lim) AND	
	([english]/lim OR [german]/lim)	
#112.	#111 AND 'human'/de	903
#111.	#103 AND ([cochrane review]/lim OR [systematic	905
	review]/lim OR [meta analysis]/lim)	
#110.	#103	30'163
#109.	#108 AND ([english]/lim OR [german]/lim)	5'455
#108.	#107 AND 'human'/de	5'641
#107.	#104 OR #106	5'749
#106.	#103 AND #105	4'883

- #105. random*:ab,ti OR placebo*:de,ab,ti OR ((double 1'724'031NEXT/1 blind*):ab,ti)
- #104.#101 NOT #102 AND ([controlled clinical2'359trial]/lim OR [randomized controlled trial]/lim)
- #103. #101 NOT #102 30'163
- #102. #101 AND 'Conference Abstract'/it 6'845
- #101. #20 AND #100 37'008
- #100. #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR 168'262
 #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR
 #35 OR #36 OR #37 OR #38 OR #39 OR #40 OR #41 OR
 #42 OR #43 OR #44 OR #45 OR #46 OR #47 OR #48 OR
 #49 OR #50 OR #51 OR #52 OR #53 OR #54 OR #55 OR
 #56 OR #57 OR #58 OR #59 OR #60 OR #61 OR #62 OR
 #63 OR #64 OR #65 OR #66 OR #67 OR #68 OR #69 OR
 #70 OR #71 OR #72 OR #73 OR #74 OR #75 OR #76 OR
 #77 OR #78 OR #79 OR #80 OR #81 OR #82 OR #83 OR
 #84 OR #85 OR #86 OR #87 OR #88 OR #89 OR #90 OR
 #91 OR #92 OR #93 OR #94 OR #95 OR #96 OR #97 OR
 #98 OR #99

#99.	verzenio*:ti,ab,de,tn	24
#98.	'ly2835219':ti,ab,de,tn	74
# 97.	'ly 2835219':ti,ab,de,tn	123
# 96.	bemaciclib:ti,ab,de,tn	
# 95.	abemaciclib:ti,ab,de,tn	817
#94.	'abemaciclib'/exp	794
#93.	'lee11':ti,ab,de,tn	
#92.	'lee 11':ti,ab,de,tn	2

#91.	'lee011*':ti,ab,de,tn	140
#90.	'lee 011*':ti,ab,de,tn	168
#89.	kisqali:ti,ab,de,tn	42
#88.	ribociclib:ti,ab,de,tn	1'024
#87.	'ribociclib'/exp	982
#86.	tamoxifene:ti,ab,de,tn	152
#85.	tamoxasta:ti,ab,de,tn	7
#84.	tamoplac:ti,ab,de,tn	1
#83.	'nsc180973':ti,ab,de,tn	
#82.	'nsc 180973':ti,ab,de,tn	16
#81.	kessar:ti,ab,de,tn	37
#80.	ebefen:ti,ab,de,tn	1
#79.	tamoxifen:ti,ab,de,tn	65'031
#78.	'tamoxifen'/exp	60'717
#77.	'zm182780':ti,ab,de,tn	
#76.	'zm 182780':ti,ab,de,tn	29
#75.	'zd9238':ti,ab,de,tn	
#74.	'zd 9238':ti,ab,de,tn	3
#73.	'zd182780':ti,ab,de,tn	
#72.	'zd 182780':ti,ab,de,tn	1
#71.	'ici182780':ti,ab,de,tn	264
#70.	'ici 182780':ti,ab,de,tn	2'179
#69.	'ici 182 780':ti,ab,de,tn	2'436
#68.	faslodex:ti,ab,de,tn	828
#67.	fulvestrant:ti,ab,de,tn	8'708
#66.	'fulvestrant'/exp	8'500

#65. 'pnu155971':ti,ab,de,tn

#64.	'pnu 155971':ti,ab,de,tn	6
#63.	nikides*:ti,ab,de,tn	
#62.	nakides*:ti,ab,de,tn	
#61.	'fce24304':ti,ab,de,tn	3
#60.	'fce 24304':ti,ab,de,tn	49
#59.	aromasin*:ti,ab,de,tn	554
#58.	'6 methyleneandrosta 1, 4 diene 3, 17	3
	dione':ti,ab,de,tn	
#57.	exemestane:ti,ab,de,tn	6'157
#56.	'exemestane'/exp	5'997
#55.	loxifan:ti,ab,de,tn	1
#54.	femara:ti,ab,de,tn	1'137
#53.	femar:ti,ab,de,tn	18
#52.	femar*:ti,ab,de,tn	1'183
#51.	'cgs20267':ti,ab,de,tn	7
#50.	'cgs 20267':ti,ab,de,tn	139
#49.	letrozole:ti,ab,de,tn	11'791
#48.	'letrozole'/exp	11'546
#47.	'zd1033':ti,ab,de,tn	7
#46.	'zd 1033':ti,ab,de,tn	27
#45.	'trozolet':ti,ab,de,tn	
#44.	'icid1033':ti,ab,de,tn	
#43.	'ici d1033':ti,ab,de,tn	23
#42.	'arimidex':ti,ab,de,tn	1'719
#41.	'anastrazole':ti,ab,de,tn	299
#40.	'anastrozole':ti,ab,de,tn	9'546
#39.	'anastrozole'/exp	9'365

#38.	'estrogen synthetas* inhibitor*':ti,ab,de	15
#37.	'aromatase inhibitor*':ti,ab,de	17'446
#36.	'aromatase inhibitor'/exp	30'921
#35.	'pf00080665':ti,ab,de,tn	
#34.	'pf 00080665':ti,ab,de,tn	
#33.	pd332991:ti,ab,de,tn	9
#32.	pd0332991:ti,ab,de,tn	152
#31.	'pd 332991':ti,ab,de,tn	16
#30.	'pd 0332991':ti,ab,de,tn	636
#29.	ibrance:ti,ab,de,tn	132
#28.	palbociclib:ti,ab,de,tn	3'053
#27.	'palbociclib'/exp	2'990
#26.	cdk*:ti,ab	46'272
#25.	cdki:ti,ab	448
#24.	cki:ti,ab	840
#23.	cdi:ti,ab	9'600
#22.	'cyclin-dependent kinase inhibitor*':ti,ab,de	33'787
#21.	'cyclin dependent kinase inhibitor'/exp	40'336
#20.	#4 AND #19	258'067
#19.	#5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12	2'763'693
	OR #13 OR #14 OR #15 OR #16 OR #17 OR #18	
#18.	'her 2*':ti,ab	232'016
#17.	her2*:ti,ab	49'583
#16.	'human epidermal growth factor*	14'978
	receptor*':ti,ab,de	
#15.	'human epidermal growth factor receptor 2	656
	negative breast cancer'/exp	

#14.	'er':ti,ab	128'404
#13.	'oestrogen receptor*':ti,ab,de	7'196
#12.	'estrogen receptor*':ti,ab,de	108'064
#11.	'estrogen receptor'/exp	90'282
#10.	'hr':ti,ab	401'554
# 9. '	hormon* receptor*':ti,ab,de	68'059
#8. '	hormone receptor'/exp	341'096
#7. '	advanc*':ti,ab,de	1'067'042
#6. '	metasta*':ti,ab,de	856'692
# 5. '	metastasis'/exp	628'186
#4. ‡	#2 OR #3	608'037
#3. ((breast* OR mamma*) NEAR/2 (cancer* OR tumor* OR	603'499
t	umour* OR carcinom* OR adenom* OR adenoc* OR	
'	adeno c*' OR sarcoma* OR neoplasm* OR	
r	nalignan*)):ti,ab,de	
#2. '	breast cancer'/exp	453'654
#1. '	metastatic breast cancer'/exp	18'035

12.1.3 The Cochrane Library

Search conducted on 17 November 2019

Search strategy:

- ID Search
- #1 MeSH descriptor: [Breast Neoplasms] explode all trees
- #2 ((breast* OR mamma*) NEAR (cancer* OR tumor* OR tumour* OR neoplasm* OR malignan*
 OR carcinom* OR sarcoma* OR adenom* OR adeno*)):ti,ab,kw (Word variations have been searched)
- #3 #1 OR #2
- #4 (advanc*):ti,ab,kw (Word variations have been searched)

- #5 (metasta*):ti,ab,kw (Word variations have been searched)
- #6 MeSH descriptor: [Neoplasm Metastasis] explode all trees
- #7 (hormon* receptor*):ti,ab,kw (Word variations have been searched)
- #8 (HR*):ti,ab,kw
- #9 MeSH descriptor: [Receptors, Estrogen] explode all trees
- #10 (estrogen receptor*):ti,ab,kw (Word variations have been searched)
- #11(ER*):ti,ab,kw
- #12 (human epidermal growth factor* receptor*):ti,ab,kw (Word variations have been searched)
- #13(HER2*):ti,ab,kw (Word variations have been searched)
- #14 ("HER 2*"):ti,ab,kw (Word variations have been searched)
- #15MeSH descriptor: [Receptor, ErbB-2] explode all trees
- #16 (Erb-B2 receptor* tyrosine kinase):ti,ab,kw (Word variations have been searched)
- #17 (ErbB2 receptor* tyrosine kinase):ti,ab,kw (Word variations have been searched)
- #18(Erb-B2*):ti,ab,kw (Word variations have been searched)
- #19("Erb-B 2*") (Word variations have been searched)
- #20 (ERB*B2*):ti,ab,kw (Word variations have been searched)
- #21 ("ErbB-2*")
- #22 (ERBB*2*):ti,ab,kw (Word variations have been searched)
- #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR
 #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22

#24#3 AND #23

#25 MeSH descriptor: [Cyclin-Dependent Kinase Inhibitor Proteins] explode all trees

#26 (cyclin-dependent kinase inhibitor*):ti,ab,kw (Word variations have been searched)

#27 (CDI):ti,ab,kw

#28 (CKI):ti,ab,kw

#29(CDK*):ti,ab,kw

#30 (palbociclib):ti,ab,kw

#31 (Ibrance):ti,ab,kw (Word variations have been searched) #32(pd 0332991):ti,ab,kw (Word variations have been searched) #33 (pd 332991):ti,ab,kw (Word variations have been searched) #34 (pd0332991):ti,ab,kw (Word variations have been searched) #35(pd332991) (Word variations have been searched) #36 (pf 00080665) (Word variations have been searched) #37 (pf00080665) (Word variations have been searched) #38 MeSH descriptor: [Aromatase Inhibitors] explode all trees #39 (aromatase inhibitor*):ti,ab,kw (Word variations have been searched) #40 (estrogen synthetas* inhibitor*):ti,ab,kw (Word variations have been searched) #41 MeSH descriptor: [Anastrozole] explode all trees #42 (anastrozole):ti,ab,kw (Word variations have been searched) #43 (anastrazole):ti,ab,kw (Word variations have been searched) #44 (arimidex):ti,ab,kw (Word variations have been searched) #45 (ici d1033) (Word variations have been searched) #46 (icid1033) (Word variations have been searched) #47 (trozolet) (Word variations have been searched) #48 (zd 1033):ti,ab,kw (Word variations have been searched) #49 (zd1033):ti,ab,kw (Word variations have been searched) #50 MeSH descriptor: [Letrozole] explode all trees #51 (letrozole):ti,ab,kw (Word variations have been searched) #52 (cgs 20267):ti,ab,kw (Word variations have been searched) #53 (cgs20267):ti,ab,kw #54 (femar*):ti,ab,kw (Word variations have been searched) #55 (loxifan) (Word variations have been searched) #56 (exemestane):ti,ab,kw (Word variations have been searched) #57 (6 methyleneandrosta 1, 4 diene 3, 17 dione) (Word variations have been searched) #58 (aromasin*):ti,ab,kw (Word variations have been searched) #59 (fce 24304):ti,ab,kw (Word variations have been searched) #60 (fce24304) (Word variations have been searched) #61 (nakides*) (Word variations have been searched) #62(nikides*) (Word variations have been searched) #63 (pnu 155971) (Word variations have been searched) #64 (pnu155971) (Word variations have been searched) #65MeSH descriptor: [Fulvestrant] explode all trees #66 (Fulvestrant):ti,ab,kw (Word variations have been searched) #67 (faslodex):ti,ab,kw (Word variations have been searched) #68 (ici 182 780):ti,ab,kw (Word variations have been searched) #69 (ici 182780):ti,ab,kw (Word variations have been searched) #70 (ici182780):ti,ab,kw (Word variations have been searched) #71 (zd 182780) (Word variations have been searched) #72 (zd182780) (Word variations have been searched) #73 (zd 9238) (Word variations have been searched) #74 (zd9238):ti,ab,kw (Word variations have been searched) #75 (zm 182780) (Word variations have been searched) #76 (zm182780) (Word variations have been searched) #77 MeSH descriptor: [Tamoxifen] explode all trees #78 (Tamoxifen):ti,ab,kw (Word variations have been searched) #79 (ebefen) (Word variations have been searched) #80 (kessar):ti,ab,kw (Word variations have been searched) #81 (nsc 180973):ti,ab,kw (Word variations have been searched) #82 (nsc180973) (Word variations have been searched) #83 (tamoplac) (Word variations have been searched) #84 (tamoxasta) (Word variations have been searched)

#85 (tamoxifene):ti,ab,kw

#86 (Ribociclib):ti,ab,kw (Word variations have been searched)
#87 (kisqali):ti,ab,kw (Word variations have been searched)
#88 ("lee 011"):ti,ab,kw (Word variations have been searched)
#89 (lee011):ti,ab,kw (Word variations have been searched)
#90 ("lee 11"):ti,ab,kw (Word variations have been searched)
#91 (lee11) (Word variations have been searched)
#92 (Abemaciclib):ti,ab,kw (Word variations have been searched)
#93 (bemaciclib):ti,ab,kw (Word variations have been searched)
#94 (ly 2835219) (Word variations have been searched)
#95 (ly2835219):ti,ab,kw (Word variations have been searched)
#96 (verzenio*) (Word variations have been searched)

#97 #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR #35 OR
#36 OR #37 OR #38 OR #39 OR #40 OR #41 OR #42 OR #43 OR #44 OR #45 OR #46 OR
#47 OR #48 OR #49 OR #50 OR #51 OR #52 OR #53 OR #54 OR #55 OR #56 OR #57 OR
#58 OR #59 OR #60 OR #61 OR #62 OR #63 OR #64 OR #65 OR #66 OR #67 OR #68 OR
#69 OR #70 OR #71 OR #72 OR #73 OR #74 OR #75 OR #76 OR #77 OR #78 OR #79 OR
#80 OR #81 OR #82 OR #83 OR #84 OR #85 OR #86 OR #87 OR #88 OR #89 OR #90 OR
#91 OR #92 OR #93 OR #94 OR #95 OR #96

#98#24 AND #97 in Trials

#99#24 AND #97 in Cochrane Reviews, Cochrane Protocols

#100 #98 OR #99 4'483 hits

12.1.4 CRD

Search conducted on 17 November 2019

Search strategy:

1 MeSH DESCRIPTOR Cyclin-Dependent Kinase Inhibitor Proteins EXPLODE ALL TREES

2 (cyclin-dependent kinase inhibitor*)
3 (CDI)

4 (CKI)

- 5 (CDK*)
- 6 (palbociclib)
- 7 (Ibrance)
- 8 (pd 0332991)
- 9 (pd0332991)
- 10 (pd 332991)
- 11 (pd332991)
- 12 (pf 00080665)
- 13 (pf00080665)
- 14 MeSH DESCRIPTOR Aromatase Inhibitors EXPLODE ALL TREES
- 15 (aromatase inhibitor*)
- 16 (estrogen synthetas* inhibitor*)
- 17 (oestrogen synthetas* inhibitor*)
- 18 (Anastrozole)
- 19 (Anastrazole)
- 20 (arimidex)
- 21 (ici d1033)
- 22 (icid1033)
- 23 (trozolet)
- 24 (zd 1033)
- 25 (zd1033)
- 26 (Letrozole)
- 27 (cgs 20267)
- 28 (cgs20267)
- 29 (femar*)

30 (loxifan)

31 (exemestane)

32 (6 methyleneandrosta 1, 4 diene 3, 17 dione)

33 (aromasin*)

- 34 (fce 24304)
- 35 (fce24304)
- 36 (nakides*)
- 37 (nikides*)
- 38 (pnu 155971)
- 39 (pnu155971)
- 40 (Fulvestrant)
- 41 (faslodex)
- 42 (ici 182 780)
- 43 (ici 182780)
- 44 (ici182780)
- 45 (zd 182780)
- 46 (zd182780)
- 47 (zd 9238)
- 48 (zd9238)
- 49 (zm 182780)
- 50 (zm182780)
- 51 MeSH DESCRIPTOR Tamoxifen EXPLODE ALL TREES
- 52 (Tamoxifen)
- 53 (ebefen)
- 54 (kessar)

55 (nsc 180973)

56 (nsc180973)

- 57 (tamoplac)
- 58 (tamoxasta)
- 59 (tamoxifene)
- 60 (Ribociclib)
- 61 (kisqali)
- 62 (lee 011*)
- 63 (lee011*)
- 64 (lee 11*)
- 65 (lee11*)
- 66 (Abemaciclib)
- 67 (bemaciclib)
- 68 (ly 2835219)
- 69 (ly2835219)
- 70 (verzenio*)
- 71 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR #35 OR #36 OR #37 OR #38 OR #39 OR #40 OR #41 OR #42 OR #43 OR #44 OR #45 OR #46 OR #47 OR #48 OR #49 OR #50 OR #51 OR #52 OR #53 OR #54 OR #55 OR #56 OR #57 OR #58 OR #59 OR #60 OR #61 OR #62 OR #63 OR #64 OR #65 OR #66 OR #67 OR #68 OR #69 OR #70
- 72 MeSH DESCRIPTOR Breast Neoplasms EXPLODE ALL TREES
- 73 ((breast* OR mamma*) NEAR (cancer* OR tumor* OR tumour* OR carcinom* OR adenom* OR adenoc* OR adenoc* OR sarcoma* OR neoplasm* OR malignan*))

74 #72 OR #73

75 #71 AND #74

273 hits (59 in HTA, 100 in NHS EED, 114 in DARE)

12.1.5 Search results for clinical effectiveness and safety (Palbociclib versus comparators)

For MEDLINE and EMBASE, the numbers represent the total of the two searches (one for English and German, one for French publications).

Database	Number of hits
MEDLINE	3'783
EMBASE	5'906
The Cochrane Library	4'483
CRD	273
Total deduplicated	9'739 (8'894 RCTs, 845 SRs)

Table 18: Search results for clinical effectiveness and safety (Palbociclib versus comparators)

12.2 Search strings for safety (extended analysis), health economics as well as ethical, social, legal and organisational aspects

12.2.1 MEDLINE

A search was conducted on 4 November 2019 for publications in English and German. On 21 January 2020 an additional search was conducted using identical strings except for the language restriction, which was changed to French instead of English and German.

(Including Epub Ahead of Print, In-Process and Other Non-Indexed Citations and Daily from 2015 to 1 November 2019)

Search strategy:

- 1 exp Breast Neoplasms/ (384873)
- 2 ((breast* or mamma*) adj3 (cancer* or tumo?r* or carcinom* or adenom* or adeno?c* or neoplasm*)).mp. (532'852)
- 3 1 or 2 (532'863)
- 4 palbociclib.mp. (1'248)
- 5 Ibrance.mp. (37)
- 6 "pd 0332991".mp. (119)
- 7 pd 332991.mp. (5)
- 8 pd0332991.mp. (117)
- 9 pd332991.mp. (4)

- 10 "pf 00080665".mp. (0)
- 11 "pf00080665".mp. (0)
- 12 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 (1'311)
- 13 3 and 12 (798)
- 14 exp animals/ not humans.sh. (6'654'850)
- 15 13 not 14 (791)
- 16 limit 15 to (english or german) (771)
- 17 remove duplicates from 16 (485)

12.2.2 EMBASE

A search was conducted on 7 November 2019 for publications in English and German. On 21 January 2020 an additional search was conducted using identical strings except for the language restriction, which was changed to French instead of English and German.

Search strategy:

No.	Query Results	Results
#22.	#20 NOT #21	663
#21.	#20 AND 'Conference Abstract'/it	473
#20.	#18 AND 'human'/de AND ([english]/lim OR [german]/lim)	1'136
#19.	#18 AND 'human'/de	1'151
#18.	#7 AND #17	1'247
#17.	#8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16	3'058
#16.	'pf00080665':ti,ab,de,tn	
#15.	'pf 00080665':ti,ab,de,tn	
#14.	pd332991:ti,ab,de,tn	9
#13.	pd0332991:ti,ab,de,tn	152
#12.	'pd 332991':ti,ab,de,tn	16
#11.	'pd 0332991':ti,ab,de,tn	635
#10.	ibrance:ti,ab,de,tn	132

#9.	palbociclib:ti,ab,de,tn	3'043
#8.	'palbociclib'/exp	2'980
#7.	#1 OR #6	151'843
#6.	#4 AND #5	149'547
#5.	advanc*:ti,ab OR metasta*:ti,ab	1'638'325
#4.	#2 OR #3	606'090
#3.	((breast* OR mamma*) NEAR/2 (cancer* OR tumor* OR tumour* OR carci	
	nom* OR adenom* OR adenoc* OR 'adeno c*' OR neoplasm*)):ti,ab,de	601'087
#2.	'breast cancer'/exp	453'042
#1.	'metastatic breast cancer'/exp	18'001

12.2.3 The Cochrane Library

Search conducted on 7 November 2019

Search strategy:

ID Search

#1 MeSH descriptor: [Breast Neoplasms] explode all trees

- #2 ((breast* OR mamma*) NEAR (cancer* OR tumor* OR tumour* OR carcinom* OR adenom*
 OR adenoc* OR adenoc* OR neoplasm*)) (Word variations have been searched)
- #3 #1 OR #2 (Word variations have been searched)
- #4 (palbociclib) (Word variations have been searched)
- #5 (Ibrance) (Word variations have been searched)
- #6 (pd 0332991) (Word variations have been searched)
- #7 (pd 332991) (Word variations have been searched)
- #8 (pd0332991) (Word variations have been searched)
- #9 (pd332991) (Word variations have been searched)
- #10 (pf 00080665) (Word variations have been searched)
- #11(pf00080665) (Word variations have been searched)

#12#4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 (Word variations have been searched)

#13#3 AND #12 (Word variations have been searched)

252 hits

12.2.4 EconLit

Search conducted on 24 January 2020.

Search strategy:

#	Query	Limiters/Expanders	Last Run Via	Results
S8	TX pf00080665	Expanders - Apply equivalent subjects Search modes - Boolean/Phrase	Interface - EBSCOhost Re- search Databases Search Screen - Advanced	0
			Database - EconLit	
S7	TX pf 00080665	Expanders - Apply equivalent subjects Search modes - Boolean/Phrase	Interface - EBSCOhost Re- search Databases Search Screen - Advanced	0
			Search Database Econliit	
S6	TX pd332991	Expanders - Apply equivalent	Interface - EBSCOhost Re-	0
		subjects	search Databases	-
		Search modes - Boolean/Phrase	Search Screen - Advanced Search	
<u> </u>			Database - EconLit	
S5	1 X pd	Expanders - Apply equivalent	Interface - EBSCOhost Re-	0
	332991	Subjects Search modes - Boolean/Phrase	Search Screen - Advanced	
			Search	
			Database - EconLit	
S4	ТХ	Expanders - Apply equivalent	Interface - EBSCOhost Re-	0
	pd0332991	subjects	search Databases	
		Search modes - Boolean/Phrase	Search Screen - Advanced	
			Database - EconLit	
S3	TX pd	Expanders - Apply equivalent	Interface - EBSCOhost Re-	0
	0332991	subjects	search Databases	
		Search modes - Boolean/Phrase	Search Screen - Advanced Search	
			Database - EconLit	
S2	TX Ibrance	Expanders - Apply equivalent	Interface - EBSCOhost Re-	0
		Subjects	search Databases	
		Search modes - Boolean/Phrase	Search	
			Database - EconLit	
S1	TX palbo-	Expanders - Apply equivalent	Interface - EBSCOhost Re-	0
	ciclib	subjects	search Databases	
		Search modes - Boolean/Phrase	Search Screen - Advanced Search	
			Database - EconLit	

12.2.5 CRD

Search conducted on 7 November 2019

Search strategy:

1 (palbociclib)

2 (Ibrance)

- 3 (pd 0332991)
- 4 (pd0332991)
- 5 (pd 332991)
- 6 (pd332991)
- 7 (pf 00080665)
- 8 (pf00080665)

9 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8

12.2.6 Scopus

A search was conducted on 8 November 2019 for publications in English and German. On 24 January 2020 an additional search was conducted using identical strings except for the language restriction, which was changed to French instead of English and German.

Search strategy:

((TITLE-ABS-KEY ((breast* OR mamma*) W/3 (cancer* OR tumor* OR tumour* OR carcinom* OR adenom* OR adenoc* OR adenoc* OR neoplasm*))) AND (TITLE-ABS-KEY (advanc* OR metasta*))) AND ((TITLE-ABS-KEY (palbociclib)) OR (TITLE-ABS-KEY (ibrance))) OR (TITLE-ABS-KEY ("pd 0332991")) OR (TITLE-ABS-KEY (pd0332991)) OR (TITLE-ABS-KEY ("pd 0332991")) OR (TITLE-ABS-KEY (pd0332991)) OR (TITLE-ABS-KEY ("pd 0332991")) OR (TITLE-ABS-KEY (pd0332991)) OR (TITLE-ABS-KEY ("pf 00080665"))) OR (TITLE-ABS-KEY (pf00080665))) AND (LIMIT-TO (EXACTKEYWORD, "Human") OR LIMIT-TO (EXACTKEYWORD, "Humans")) AND (LIMIT-TO (LANGUAGE, "English") OR LIMIT-TO (LANGUAGE, "German"))

12.2.7 TRIP database

Search conducted on 7 November 2019

Search strategy:

((breast* OR mamma*) NEAR (cancer* OR tumor* OR tumour* OR carcinom* OR adenom* OR adenoc* OR adenoc* OR neoplasm*)) AND ((palbociclib OR lbrance OR "pd 0332991" OR pd0332991 OR "pd 332991" OR pd332991 OR "pf 00080665" OR pf00080665))

12.2.8 Search results for safety (extended analysis), health economics, ethical, social, legal and organisational aspects

For MEDLINE, EMBASE and Scopus, the numbers represent the total of the two searches (one for English and German, one for French publications).

Table 19: Search results for safety (extended analysis), health economics, ethical, social, lega
and organisational aspects

Database	Number of hits
MEDLINE	489
EMBASE	667
The Cochrane Library	252
EconLit	0
CRD	7
Scopus	674
TRIP-database	20
Total deduplicated	1'107

12.3 List of countries from which patients were recruited in the included RCTs

Patients were recruited from the following countries: Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Czech Republic, Denmark, Egypt, Finland, France, Georgia, Germany, Greece, Hong Kong, Hungary, Iceland, India, Ireland, Israel, Italy, Japan, Jordan, Korea, Lebanon, Malaysia, Mexico, the Netherlands, New Zealand, Norway, Pakistan, Peru, Philippines, Poland, Portugal, Puerto Rico, Romania, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Tunisia, Turkey, Ukraine United Arab Emirates, United Kingdom, Uruguay, USA.

12.4 Preliminary quality appraisal of included RCTs

			RoB d	omains	
Trial identifier	Publication used for RoB assessment	Random se- quence generation	Allocation conceal- ment	Blinding of participants and person- nel	Blinding of outcome assessment
NCT01942135 PALOMA-3	Cristofanilli et al., 2016	low	low	low	low
NCT00721409 PALOMA-1	Finn et al., 2015	low	low	high/unclear	low
NCT01740427 PALOMA-2	Finn et al., 2016	low	low	low	low
NCT01958021 MONALEESA-2	Hortobagyi et al., 2016	low	low	low	low
NCT02422615 MONALEESA-3	Slamon et al., 2018	low	high/unclear	low	low
NCT02246621 MONARCH 3	Goetz et al., 2017	low	low	low	low
NCT02107703 MONARCH 2	Sledge et al., 2017	low	low	low	low
NCT02278120 MONALEESA-7	Tripathy et al., 2018	low	low	low	low
NCT01610284 BELLE-2	Baselga et al., 2017	low	low	low	low
NCT01633060 BELLE-3	Leo et al., 2018	low	low	low	low
NCT00305448 FINDER1	Ohno et al., 2010	high/unclear	high/unclear	high/unclear	high/unclear
NCT00313170 FINDER2	Pritchard et al., 2010	high/unclear	high/unclear	high/unclear	high/unclear
NCT00863655 BOLERO-2	Yardley et al., 2013	low	low	low	low
NCT00050141	Johnston et al., 2008	high/unclear	high/unclear	high/unclear	high/unclear
NCT01266213 FLAG	Kim et al., 2018	low	high/unclear	high/unclear	high/unclear
NCT00274469 FIRST	Robertson et al., 2009	low	low	high/unclear	high/unclear
NCT01602380 FALCON	Robertson et al., 2016	low	low	low	low
NCT00066378	Tryfonidis et al., 2016	high/unclear	high/unclear	high/unclear	high/unclear
NCT00073528	Johnston et al., 2009	high/unclear	high/unclear	low	low
NCT00253422 NCT00944918 SoFEA	Johnston et al., 2013	low	low	high/unclear	high/unclear
NCT00075764	Mehta et al., 2012	low	low	low	low
NCT00229697	Osborne et al., 2011	low	low	low	low
NCT00083993	Wolff et al., 2013	low	low	low	low
NCT00390455	Burstein et al., 2014	low	low	low	low
NCT00601900 CALGB 40503	Dickler et al., 2016	high/unclear	high/unclear	high/unclear	high/unclear
NCT00545077 LEA	Martin et al., 2015	low	low	high/unclear	high/unclear
NCT00626106	Robertson et al., 2013	low	low	low	low
NCT00676663	Yardley et al., 2013	low	high/unclear	low	low
NCT01142401	Adelson et al., 2016	low	high/unclear	high/unclear	high/unclear
NCT00770354	Ibrahim et al., 2011	low	high/unclear	high/unclear	high/unclear

Table 20: Preliminary quality assessment of included RCTs

		RoB domains					
Trial identifier	Publication used for RoB assessment	Random se- quence generation	Allocation conceal- ment	Blinding of participants and person- nel	Blinding of outcome assessment		
NCT01151215 MINT	Johnston et al., 2016	low	low	low	high/unclear		
NCT00696072	Paul et al., 2019	low	high/unclear	high/unclear	high/unclear		
NCT01160718	Zaman et al., 2015	low	low	low	low		
NCT01234857	Baselga et al., 2017	low	high/unclear	high/unclear	high/unclear		
NCT01437566 FERGI	Krop et al., 2016	low	low	low	low		
NCT01528345	Musolino et al., 2017	low	low	low	low		
NCT02216786 MANTA	Schmid et al., 2019	low	low	high/unclear	high/unclear		
NCT02437318	Andre et al., 2019	low	low	low	low		
NA	lwata et al., 2013	low	high/unclear	low	high/unclear		
NCT02482753 ACE	Jiang et al., 2019	low	low	low	low		
NCT02592746 KCSG-BR15-10	Park et al., 2019	low	low	high/unclear	high/unclear		
UMIN000010087 Hi-FAIR ex	Yamamoto et al., 2013	high/unclear	high/unclear	high/unclear	high/unclear		
	Bachelot et al., 2012	low	high/unclear	high/unclear	high/unclear		
	Lipton et al., 2008	high/unclear	high/unclear	high/unclear	high/unclear		

12.5 Quality assessment of included economic studies

Table 21: Galve-Calvo et al. 2018¹⁵¹

CHEC checklist*

	Item	Yes	No	Unclear
1.	Is the study population clearly described?		Х	
2.	Are competing alternatives clearly described?	Х		
3.	Is a well-defined research question posed in answerable form?	Х		
4.	Is the economic study design appropriate to the stated objective?	Х		
5.	Is the chosen time horizon appropriate to include relevant costs and con- sequences?	х		
6.	Is the actual perspective chosen appropriate?	Х		
7.	Are all important and relevant costs for each alternative identified?	Х		
8.	Are all costs measured appropriately in physical units?	Х		
9.	Are costs valued appropriately?	Х		
10.	Are all important and relevant outcomes for each alternative identified?	Х		
11.	Are all outcomes measured appropriately?			Х
12.	Are outcomes valued appropriately?			Х
13.	Is an incremental analysis of costs and outcomes of alternatives per- formed?	Х		
14.	Are all future costs and outcomes discounted appropriately?	Х		
15.	Are all important variables whose values are uncertain appropriately subjected to sensitivity analysis?			X
16.	Do the conclusions follow from the data reported?	Х		
17.	Does the study discuss the generalizability of the results to other settings and patient/client groups?		X	
18.	Does the article indicate that there is no potential conflict of interest of study researcher(s) and funder(s)?	х		
19.	Are ethical and distributional issues discussed appropriately?		X	
	Comment: ICER refers to comparator, therefore small			

Table 22: Mamiya et al. 2017⁷

CHEC checklist*

	Item	Yes	No	Unclear
1.	Is the study population clearly described?			Х
2.	Are competing alternatives clearly described?		Х	
3.	Is a well-defined research question posed in answerable form?	Х		
4.	Is the economic study design appropriate to the stated objective?	Х		
5.	Is the chosen time horizon appropriate to include relevant costs and con- sequences?			Х
6.	Is the actual perspective chosen appropriate?	Х		
7.	Are all important and relevant costs for each alternative identified?	Х		
8.	Are all costs measured appropriately in physical units?	Х		
9.	Are costs valued appropriately?			Х
10.	Are all important and relevant outcomes for each alternative identified?		Х	
11.	Are all outcomes measured appropriately?	Х		
12.	Are outcomes valued appropriately?	Х		
13.	Is an incremental analysis of costs and outcomes of alternatives per- formed?	Х		
14.	Are all future costs and outcomes discounted appropriately?		Х	
15.	Are all important variables whose values are uncertain appropriately subjected to sensitivity analysis?	Х		
16.	Do the conclusions follow from the data reported?	Х		
17.	Does the study discuss the generalizability of the results to other settings and patient/ client groups?		X	
18.	Does the article indicate that there is no potential conflict of interest of study researcher(s) and funder(s)?	Х		
19.	Are ethical and distributional issues discussed appropriately?		Х	
	Comments: societal or payer perspective is not clear, no discounting			

Table 23: Matter-Walstra et al. 2016⁸ and Matter-Walstra et al. 2017¹⁵⁴

CHEC checklist*

	Item	Yes	No	Unclear
1.	Is the study population clearly described?	Х		
2.	Are competing alternatives clearly described?	Х		
3.	Is a well-defined research question posed in answerable form?	Х		
4.	Is the economic study design appropriate to the stated objective?	Х		
5.	Is the chosen time horizon appropriate to include relevant costs and con- sequences?	Х		
6.	Is the actual perspective chosen appropriate?	Х		
7.	Are all important and relevant costs for each alternative identified?		Х	
8.	Are all costs measured appropriately in physical units?			Х
9.	Are costs valued appropriately?			Х
10.	Are all important and relevant outcomes for each alternative identified?	Х		
11.	Are all outcomes measured appropriately?			Х
12.	Are outcomes valued appropriately?	Х		
13.	Is an incremental analysis of costs and outcomes of alternatives per- formed?	Х		
14.	Are all future costs and outcomes discounted appropriately?	Х		
15.	Are all important variables whose values are uncertain appropriately subjected to sensitivity analysis?	Х		
16.	Do the conclusions follow from the data reported?	Х		
17.	Does the study discuss the generalizability of the results to other settings and patient/ client groups?		X	
18.	Does the article indicate that there is no potential conflict of interest of study researcher(s) and funder(s)?	Х		
19.	Are ethical and distributional issues discussed appropriately?		Х	
	Comments: not all direct costs included and drug costs for PAL from US in Publication 2016, in Publication 2017 from Swiss			

Table 24: Mistry et al. 2018¹⁵²

CHEC checklist*

	Item	Yes	No	Unclear
1.	Is the study population clearly described?	Х		
2.	Are competing alternatives clearly described?	Х		
3.	Is a well-defined research question posed in answerable form?	Х		
4.	Is the economic study design appropriate to the stated objective?	Х		
5.	Is the chosen time horizon appropriate to include relevant costs and con- sequences?	Х		
6.	Is the actual perspective chosen appropriate?	Х		
7.	Are all important and relevant costs for each alternative identified?	Х		
8.	Are all costs measured appropriately in physical units?	Х		
9.	Are costs valued appropriately?			Х
10.	Are all important and relevant outcomes for each alternative identified?		Х	
11.	Are all outcomes measured appropriately?		Ì	Х
12.	Are outcomes valued appropriately?			Х
13.	Is an incremental analysis of costs and outcomes of alternatives per- formed?	Х		
14.	Are all future costs and outcomes discounted appropriately?	Х		
15.	Are all important variables whose values are uncertain appropriately sub- jected to sensitivity analysis?			Х
16.	Do the conclusions follow from the data reported?	Х		
17.	Does the study discuss the generalizability of the results to other settings and patient/ client groups?		X	
18.	Does the article indicate that there is no potential conflict of interest of study researcher(s) and funder(s)?		X*	
19.	Are ethical and distributional issues discussed appropriately?		Х	
	Comments: "Funding for this study was provided by Novartis, the manu- facturer of Ribociclib, Novartis provided input on the study design and data collection, analysis and interpretation"			

Table 25: Raphael et al. 2017¹⁵³

CHEC checklist*

	Item	Yes	No	Unclear
1.	Is the study population clearly described?			Х
2.	Are competing alternatives clearly described?	Х		
3.	Is a well-defined research question posed in answerable form?	Х		
4.	Is the economic study design appropriate to the stated objective?	Х		
5.	Is the chosen time horizon appropriate to include relevant costs and con- sequences?	Х		
6.	Is the actual perspective chosen appropriate?	Х		
7.	Are all important and relevant costs for each alternative identified?	Х		
8.	Are all costs measured appropriately in physical units?		Х	
9.	Are costs valued appropriately?			Х
10.	Are all important and relevant outcomes for each alternative identified?	Х		
11.	Are all outcomes measured appropriately?			Х
12.	Are outcomes valued appropriately?			Х
13.	Is an incremental analysis of costs and outcomes of alternatives per- formed?	Х		
14.	Are all future costs and outcomes discounted appropriately?	Х		
15.	Are all important variables whose values are uncertain appropriately subjected to sensitivity analysis?	Х		
16.	Do the conclusions follow from the data reported?	Х		
17.	Does the study discuss the generalizability of the results to other settings and patient/client groups?	Х		
18.	Does the article indicate that there is no potential conflict of interest of study researcher(s) and funder(s)?	Х		
19.	Are ethical and distributional issues discussed appropriately?		X	
	Comments: well conducted study, guidance used from Canadian Agency for Drugs and Technologies in Health (CADTH)			

Table 26: Zhang / Long 2019¹⁵⁵

CHEC checklist*

	Item	Yes	No	Unclear
1.	Is the study population clearly described?		Х	
2.	Are competing alternatives clearly described?	Х		
3.	Is a well-defined research question posed in answerable form?	Х	Ì	
4.	Is the economic study design appropriate to the stated objective?	Х		
5.	Is the chosen time horizon appropriate to include relevant costs and con- sequences?	Х		
6.	Is the actual perspective chosen appropriate?	Х		
7.	Are all important and relevant costs for each alternative identified?		Х	
8.	Are all costs measured appropriately in physical units?		Х	
9.	Are costs valued appropriately?	Х		
10.	Are all important and relevant outcomes for each alternative identified?			Х
11.	Are all outcomes measured appropriately?			Х
12.	Are outcomes valued appropriately?			Х
13.	Is an incremental analysis of costs and outcomes of alternatives per- formed?	Х		
14.	Are all future costs and outcomes discounted appropriately?	Х		
15.	Are all important variables whose values are uncertain appropriately sub- jected to sensitivity analysis?			Х
16.	Do the conclusions follow from the data reported?	Х		
17.	Does the study discuss the generalizability of the results to other settings and patient/client groups?		X	
18.	Does the article indicate that there is no potential conflict of interest of study researcher(s) and funder(s)?	Х		
19.	Are ethical and distributional issues discussed appropriately?		Х	
	Comments: Only a brief, somewhat rudimentary description of the meth- ods, sensitivity analysis not shown in publication, cost data: only price of drugs and costs of severe neutropenia			

Table 27: Zhang et al. 2019¹⁵⁶

CHEC checklist*

	Item	Yes	No	Unclear
1.	Is the study population clearly described?	Х		
2.	Are competing alternatives clearly described?	Х		
3.	Is a well-defined research question posed in answerable form?	Х		
4.	Is the economic study design appropriate to the stated objective?	Х		
5.	Is the chosen time horizon appropriate to include relevant costs and con- sequences?	Х		
6.	Is the actual perspective chosen appropriate?	Х		
7.	Are all important and relevant costs for each alternative identified?			Х
8.	Are all costs measured appropriately in physical units?			Х
9.	Are costs valued appropriately?			Х
10.	Are all important and relevant outcomes for each alternative identified?	Х		
11.	Are all outcomes measured appropriately?			Х
12.	Are outcomes valued appropriately?			Х
13.	Is an incremental analysis of costs and outcomes of alternatives per- formed?	Х		
14.	Are all future costs and outcomes discounted appropriately?	Х		
15.	Are all important variables whose values are uncertain appropriately subjected to sensitivity analysis?	Х		
16.	Do the conclusions follow from the data reported?	Х		
17.	Does the study discuss the generalizability of the results to other settings and patient/client groups?		Х	
18.	Does the article indicate that there is no potential conflict of interest of study researcher(s) and funder(s)?	Х		
19.	Are ethical and distributional issues discussed appropriately?		Х	
	Comments: for median OS time the authors did not use the PALOMA-3 trial (median OS time in PALOMA-3 trial not reported); instead they used OS time from the CONFIRM-3 trial (comparing FUL 250 mg with FUL 500 mg); utility values taken from the literature, which may differ from PALOMA-3			

12.6 Ongoing studies

Table 28: Characteristics of relevant ongoing studies

Trial ID	Study design	Size (pts)*	Treatment (combination) of interest	Primary completion date†	Study completion date†
NCT04031885	RCT	300	ABE + FUL	15.04.2021	15.12.2022
NCT03939897	RCT	194	ABE + FUL	01.11.2022	01.11.2022
NCT03425838 SONIA	RCT	1050	ANA/LET + PAL/RIB/ABE FUL + PAL/RIB/ABE	30.04.2021	31.10.2022
NCT02763566 MONARCH plus	RCT	463	ABE + NSAI pbo + NSAI ABE + FUL pbo + FUL	29.03.2019	27.11.2020
NCT03966898	RCT	426	pbo + ANA/LET	01.12.2020	01.06.2022
NCT02730091 VICTORIANE	RCT	98	ANA/LET	24.02.2021	28.02.2022
NCT02072512 PROOF	RCT	180	FUL ANA	30.11.2015	31.12.2016
NCT02767661 MECCA	RCT	240	ANA/LET/EXE	31.05.2021	31.05.2023
NCT01654185	RCT	60	AI	31.07.2014	31.07.2016
UMIN000025156	RCT	130	AI	N/A (anticipated start 2017)	N/A (anticipated start 2017)
NCT02511639 EUCTR2013-004153-24-IT MAIN-A	RCT	110	ANA/LET/EXE	31.12.2019	30.06.2020
NCT03778931 EMERALD	RCT	466	FUL/ANA/LET/EXE	31.08.2021	31.08.2022
NCT02646735 FRIEND	RCT	148	FUL EXE	31.12.2019	31.12.2020
NCT03538171	RCT	327	pbo + EXE	28.02.2021	31.08.2021
NCT03291886	RCT	124	pbo + EXE	31.12.2019	30.11.2021

Trial ID	Study design	Size (pts)*	Treatment (combination) of interest	Primary completion date†	Study completion date†
NCT02115282	RCT	600	pbo + EXE	14.01.2021	N/A
NCT02007512	RCT	247	pbo + EXE	30.09.2016	31.03.2020
NCT01151046	RCT	118	pbo + EXE	30.06.2014	30.09.2014
JapicCTI-173703	RCT	124	pbo + EXE	N/A (anticipated start 2017)	N/A (anticipated start 2017)
EUCTR2010-019867-13-SE NCT01234857	RCT	400	EXE	N/A (anticipated start 2010)	N/A (anticipated start 2010)
ChiCTR-IPR-17010455	RCT	260	EXE	N/A (anticipated start 2017)	N/A (anticipated start 2017)
NCT02958852 EUCTR2016-000494-20-SE ABC-SE	RCT	126	LET	30.04.2022	30.04.2022
NCT03927456	RCT	288	pbo + FUL	01.06.2020	01.04.2021
NCT03584009	RCT	100	FUL	03.03.2022	03.03.2022
NCT03781063	RCT	100	FUL	31.07.2020	30.09.2020
NCT03280563 MORPHEUS HR+BC	RCT	126	FUL	19.02.2021	05.10.2022
NCT02756364	RCT	141	FUL	25.11.2019	25.11.2019
NCT02569801 HydranGea	RCT	71	FUL	28.03.2020	28.03.2020
NCT02374099	RCT	97	FUL	13.12.2016	21.11.2017
NCT02530411 FURVA	RCT	160	pbo + FUL	31.12.2018	31.12.2020
NCT02340221 SANDPIPER	RCT	631	pbo + FUL	15.10.2017	03.07.2021
NCT02394496 OVER	RCT	396	pbo + FUL	31.12.2016	31.01.2017
NCT01992952 FAKTION	RCT	149	pbo + FUL	31.03.2019	31.10.2020
NCT01560416	RCT	50	FUL	30.06.2016	30.06.2016
NCT01202591 GLOW	RCT	127	pbo + FUL	30.09.2014	31.10.2014

Trial ID	Study design	Size (pts)*	Treatment (combination) of interest	Primary completion date†	Study completion date†
NCT02404051 EUCTR2014-004035-38-IT FEVEX	RCT	745	FUL	31.01.2018	31.01.2019
EUCTR2014-003220-52-ES	RCT	92	FUL	N/A (anticipated start 2015)	N/A (anticipated start 2015)
NCT02344550 LEO	RCT	137	LET	31.12.2017	31.08.2018
NCT02313051 MIRACLE	RCT	200	LET	31.12.2016	31.12.2017
NCT03905343	RCT	400	RIB + ET	31.12.2026	31.12.2026
NCT03822468 PMR	RCT	350	RIB + ANA/LET	02.02.2026	02.02.2026
NCT03462251 RIBBIT	RCT	158	RIB + AI/FUL	30.06.2025	30.06.2026
NCT03671330	RCT	315	RIB + NSAI pbo + NSAI	28.10.2020	14.04.2022
NCT03555877 AMICA	RCT	150	RIB + ET ET	31.10.2019	31.01.2019
NCT01857193 EUCTR2012-005461-13-FR	RCT	132	RIB + EXE	14.03.2018	11.09.2020
NCT01872260EUCTR2013-001219- 57-ES	RCT	256	RIB + LET	01.12.2020	31.12.2020
NCT03423199 PATHWAY	RCT	180	pbo + TAM	28.02.2022	28.02.2022
NCT02311933	RCT	80	ТАМ	01.07.2020	N/A
NCT01622361 NEST	RCT	290	ТАМ	29.02.2016	29.02.2016
NCT02285179 EUCTR2013-003947-51-GB Poseidon	RCT	290	pbo + TAM	31.07.2020	31.07.2022
NCT02297438 PALOMA-4	RCT	339	PAL + LET pbo + LET	31.08.2020	02.12.2022

Trial ID	Study design	Size (pts)*	Treatment (combination) of interest	Primary completion date†	Study completion date†
NCT02028507 PEARL	RCT	596	PAL + EXE/FUL	14.01.2019	31.07.2020
NCT02491983 PARSIFAL	RCT	486	PAL + LET PAL + FUL	31.12.2019	31.05.2020
NCT02384239	RCT	70	PAL + FUL/TAM	31.12.2020	31.12.2023
NCT02690480 FLIPPER	RCT	189	PAL + FUL pbo + FUL	11.01.2020	31.12.2023
NCT02917005 FATIMA	RCT	160	PAL + EXE EXE	30.11.2021	31.12.2023
NCT02913430	RCT	150	PAL + FUL PAL + TAM	31.03.2020	31.03.2020
NCT03079011 EUCTR2016-004360-18-FR PADA-1	RCT	800	PAL + ANA/LET/EXE PAL + FUL	15.04.2022	15.04.2024
NCT03322215 PASIPHAE	RCT	196	PAL + FUL	31.10.2021	31.10.2021
NCT03355157 PADMA	RCT	260	PAL + ANA/LET/EXE/FUL	31.12.2021	31.12.2021
NCT04060862 IPATunity150	RCT	370	pbo + PAL + FUL	19.05.2023	30.01.2026
NCT04047758 ChiCTR1900024998	RCT	420	PAL + LET LET	30.09.2021	30.09.2022
EUCTR2016-004191-22-DE	RCT	960	PAL + ET +/- CANKADO	N/A (anticipated start 2017)	N/A (anticipated start 2017)
UMIN000029294	Single arm	200	PAL + FUL (after FUL failure)	N/A (anticipated start 2017)	N/A (anticipated start 2017)
NCT02692755 PALINA	Single arm	35	PAL + LET/FUL	16.12.2019	30.06.2020

ABE=abemaciclib; ANA=anastrozole; ET=endocrine therapy; EXE=exemestane; FUL=fulvestrant; LET=letrozole; N/A=not applicable; NSAI=non-steroidal aromatase inhibitor; PAL=palbociclib; pbo=placebo; pts=patients; RCT=randomised controlled trial; RIB=ribociclib; TAM=tamoxifen * Total number of patients in trial.

† When the dates in the registries were indicated only as month and year, the last day of the month concerned was used in this table.